2x^2-6x+5/2x-3<=1; 2x^2 - 6x +5 - 2x + 3 / 2x - 3 <=0; 2x^2 - 8x+ 8 / 2x-3 <=0; 2(x^2 - 4x + 4) /2(x - 1,5) <=0; x^2 - 4x + 4 / x-1,5<=0; (x-2)^ / x - 1,5<=0; x= 2;корень четной кратности, при переходе через него неравенство знак не меняет x= 1,5 Решаем методом интервалов. Точку х=2 закрашиваем, так как пришла из корня(неравенство нестрогое), а точку х= 1,5 выкалываем(пустая), так как знаменатель не может быть равен 0.
- + + 1,52 x
Методом интервалов определяем, что решением неравенства будет интервал от минус бесконечности до х=1,5(не включая) и точка х=2. ответ: (- бесконечность: 1,5) U {2}
Это все параболы и у 1 и 2 ветви вверх, найдем точки пересечения с осью ох: x^2-5+1=0, x^2-4=0, x^2=4, x1=2, x2=-2, вершина параболы под осью ох от -2 до 2; (под осью ох у<0); ответ: х принадлежит промежутку (-2;2). Если ошибка в условии, то x^2-5x+1=0, Д=25-4*1*1=21, х1=(5+корень из21)/2; х2=(5-корень из 21)/2; ответ: х принадлежит промежутку ((5-кор.из21)/2; (5+кор.из21)/2). 2) Д<0, значит корней нет, вся парабола над осью ох, у>0, ответ: х принадлежит промежутку (-беск.;+бескон.) 3)-x^2+3x-1<0, x^2-3x+1>0; ветви вверх, найдем, пересекает ли парабола ось ох: x^2-3x+1=0, D=9-4*1*1=5; х1=(3+кор.из5)/2; х2= =(3-кор.из5)/2; вершина параболы под осью ох, там у<0; нам нужны ветви над осью ох, там у>0; ответ: х принадлежит (-беск.; (3-кор.из5)/2)U ((3+кор.из5)/2; +бескон.)
2x^2 - 6x +5 - 2x + 3 / 2x - 3 <=0;
2x^2 - 8x+ 8 / 2x-3 <=0;
2(x^2 - 4x + 4) /2(x - 1,5) <=0;
x^2 - 4x + 4 / x-1,5<=0;
(x-2)^ / x - 1,5<=0;
x= 2;корень четной кратности, при переходе через него неравенство знак не меняет
x= 1,5
Решаем методом интервалов. Точку х=2 закрашиваем, так как пришла из корня(неравенство нестрогое), а точку х= 1,5 выкалываем(пустая), так как знаменатель не может быть равен 0.
- + +
1,52 x
Методом интервалов определяем, что решением неравенства будет интервал от минус бесконечности до х=1,5(не включая) и точка х=2.
ответ: (- бесконечность: 1,5) U {2}
Если ошибка в условии, то x^2-5x+1=0, Д=25-4*1*1=21, х1=(5+корень из21)/2; х2=(5-корень из 21)/2; ответ: х принадлежит промежутку
((5-кор.из21)/2; (5+кор.из21)/2).
2) Д<0, значит корней нет, вся парабола над осью ох, у>0, ответ: х принадлежит промежутку (-беск.;+бескон.)
3)-x^2+3x-1<0, x^2-3x+1>0; ветви вверх, найдем, пересекает ли парабола ось ох: x^2-3x+1=0, D=9-4*1*1=5; х1=(3+кор.из5)/2; х2=
=(3-кор.из5)/2; вершина параболы под осью ох, там у<0; нам нужны ветви над осью ох, там у>0; ответ: х принадлежит (-беск.; (3-кор.из5)/2)U
((3+кор.из5)/2; +бескон.)