Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
Нам нужно доказать что одно число делиться на другое. Что из себя представляет действие деления? Это значит разложить число на два множителя, одно из которых - делитель а другое - частное. Т.е. Если число 156 делиться на 2, то его можно поделить на множители: 156:2=78 Значит раскладываем 156 на 2 и 78. Так же в свою очередь можно разложить и 78: 78=2*39 А это значит что и число 156 можно представить в виде: 156=2*2*39 отсюда можно сделать выводы, что число 156 делиться и на 2, и на 4, и на 78, и на 39. Вот такая логика. Теперь рассмотрим наше число. Разложим по формуле как сумма кубов: Сама формула: В нашем случае:
И давайте посмотрим на первый множитель: 36+63=99 А 99 отлично делиться на 11: 99:11=9 А это значит, что данное число () без проблем делиться на 11.
1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R)
2) Функция ни четна, ни нечетна
3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3.
Точки пересечения с осью OY в y = 0
4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0.
5)
Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
+ - +
---------------------|-------------|------------------------>
1 3
Функция возрастает на промежутке: (-∞; 1] ∪ [3; +∞)
Функция убывает на промежутке: [1; 3]
Так как нет наибольших и наименьших значений у функции на всем промежутке, то область значений функции колеблется от (-∞; +∞).
График функции дан во вложениях.
156:2=78
Значит раскладываем 156 на 2 и 78.
Так же в свою очередь можно разложить и 78:
78=2*39
А это значит что и число 156 можно представить в виде:
156=2*2*39
отсюда можно сделать выводы, что число 156 делиться и на 2, и на 4, и на 78, и на 39. Вот такая логика.
Теперь рассмотрим наше число. Разложим по формуле как сумма кубов:
Сама формула:
В нашем случае:
И давайте посмотрим на первый множитель:
36+63=99
А 99 отлично делиться на 11:
99:11=9
А это значит, что данное число () без проблем делиться на 11.