«Вопрос – ответ» 1. Пластичное вещество, хорошо удерживающее воду
2. Одна из составляющих частей почвы, являющаяся хорошим разрыхлителем.
3. Жидкое вещество, необходимое для жизни и развития растений .
4. Органическая масса, получаемая из остатков растений и животных, повышающая плодородие.
5. Питательные вещества, которые образуются из перегноя под действием микроорганизмов.
6. Вещество корням растений дышать.
7. Жидкое вещество почвы.
Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень.
f(-2) = -8 + 4 - 2 + 2 = -4 < 0
f(-1) = -1 + 1 - 1 + 2 = 1 > 0
x0 ∈ (-2; -1)
Можно найти примерно
f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0
f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0
x0 ∈ (-1,4; -1,3)
Можно уточнить
f(-1,35) = 0,012125 > 0
f(-1,36) = -0,025856 < 0
x0 ∈ (-1,36; -1,35)
f(-1,353) ~ 0,0008
Точность достаточна.
Остальные два корня - комплексные.
Я думаю, что это ошибка в задаче, должно было быть
x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)
б) 4x - 4y + xy - y^2 = 4(x - y) + y(x - y) = (4 + y)(x - y)
как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.