Воспользуйтесь текстом «Кресельные подъёмники», расположенным справа. Запишите свой ответ на вопрос и приведите соответствующее решение. Анна и Сергей во время катания на лыжах используют при подъёме на гору 4-местный кресельный подъёмник, описание которого представлено в таблице справа. Спуск с горы на лыжах занимает у них 2 минуты.
Анна и Сергей начали кататься в 13:00. Если учесть только время подъёма и время спуска, какое наибольшее число раз ребята смогут воспользоваться подъёмником до окончания его работы?
ответ: раз(а)
Решение:
Тангенс наклона касательной, вида y=kx+b, к графику у=f(x), с абсциссой x₀ у точки касания, равен f'(x₀): tgα=k=f'(x₀).
f(x)=2x³-3x²-4; y=12x+1
Прямые вида y=kx+b параллельны, если k - одинаковый коэффициент. Откуда 12=k=f'(x₀).
f'(x) = (2x³)'-(3x²)'-4' = 6x²-6x
f'(x₀) =
Осталось проверить, что y=12x+1 не является касательной к y=f(x) т.к. эта прямая должна быть параллельна касательной, а не совпадать с ней.
12x+1 = 2x³-3x²-4
2x³-3x²-12x-5 = 0
x²(2x+1) - 2x(2x+1) - 5(2x+1) = 0
(2x+1)(x²-2x-5) = 0
x=-0,5 или x²-2x-5=0, D=(-2)²-4·(-5) = 24 > 0 ⇒ уравнение имеет 3 решения, поэтому y=12x+1 не касается y=f(x). В данном случаи при касании было бы 2 решения.
ответ: х = {-1;2}.
А1 - 0.2
А2 - 0.2
B1 - 0.3
B2 - 0.3
А сейчас я подробно распишу формулу по которой будем определять шанс выигрыша трех билетов:
а)
А= А1 х А2 х B1 х неB2(пусть B2 проиграл) + A1 х А2 х неB1(проиграл) х B2 + А1 х неА2(проиграл) х В1 х В2 + неА1(проиграл) х А2 х В1 х В2.
Это наша формула)
Как бы страшной она не выглядела, она очень проста:
Так как мы расчитываем шанс того что "выиграют три билета" то мы взяли все возможные ситуации в которых каждый билет проиграл.
И получится 4 ситуации( билета то 4)
1) Билеты А1 А2 В1 выиграли , но В2 проиграл
2) Билеты А1 А2 В2 выиграли , но В1 проиграл
И так далее, думаю вы поняли)
Шансы выигрыша всех билетов в каждой ситуации мы перемножаем, а затем складываем все ситуации в месте и получаем:
(Заранее скажу, что число 0,7 это шанс того что билет B2 проиграет ( 1 - 0.3), то же самое будем делать и для билетов A1 A2 B1, в каждой следующей ситуации только для билетов А1, А2 (1-0.2 = 0.8))
А= 0.2 х 0.2 х 0.3 х 0.7 + 0.2 х 0.2 х 0.7 х 0.3 + 0.2 х 0.8 х 0.3 х 0.3 + 0.8 х 0.2 х 0.3 х 0.3 = 0,0084 + 0,0084 + 0,0144 + 0,0144 = 0.0456
Я надеюсь вы поняли ход моих мыслей c;
Для остальных ситуаций попробуйте составить сами по данному примеру)