Пусть Х ч - время, через которое встретятся автобус и мотоциклист после выезда автобуса. Тогда (60Х +30) км - проедет автобус до встречи и 40Х км проедет мотоциклист. Значит 60Х+30+40Х=240 км. Отсюда Х=2,1 ч. Значит встретятся они через 2,1 - 0,5 = 1.6 ч (1ч36мин) после выезда мотоциклиста. Затем они выезжают из одной точки в разных направлениях с теми же скоростями. Расстояние 20 км между ними образуется через 0,2 ч (12мин.) (Пусть у- время через которое между ними будет 20 км, тогда 60у+40у=20. Отсюда у=0,2ч) . Следовательно, на расстоянии 20 км после выезда мотоциклиста они окажутся через 1ч36мин + 12 мин = 1ч48мин.
1) Иррациональные - это числа, которые нельзя выразить дробью a/b с целыми числителем и знаменателем. 2) Десятичные приближения по недостатку и по избытку - это десятичные дроби, между которыми заключено иррациональное число. Возьмём, например, √3~1,732. Его приближением до сотых долей по недостатку будет 1,73, а по избытку 1,74. 3) Классическое доказательство. Если √2 рационально, то его можно выразить несократимой дробью √2=a/b. Возведем все в квадрат. 2=a^2/b^2. То есть 2b^2=a^2. Теперь рассуждаем. Слева чётное число, значит a тоже чётное. Но чётный квадрат всегда делится на 4. Значит, b^2 тоже чётный. Но тогда а и b оба четные и дробь a/b можно сократить. Но мы условились, что дробь несократима. Противоречие. Значит, число √2 нельзя выразить дробью, то есть оно иррациональное. 4) Действительные - это все числа, и рациональные и иррациональные. 5) Действительные числа можно представить в виде точек на координатной прямой, причём это все точки на прямой. 6) Натуральные N, целые Z, рациональные Q, действительные R. Круги Эйлера нарисовать не могу, но могу объяснить. Действительные - самый большой круг, рациональные внутри, целые внутри рац-ных, натуральные внутри целых.
2) Десятичные приближения по недостатку и по избытку - это десятичные дроби, между которыми заключено иррациональное число. Возьмём, например, √3~1,732. Его приближением до сотых долей по недостатку будет 1,73, а по избытку 1,74.
3) Классическое доказательство. Если √2 рационально, то его можно выразить несократимой дробью √2=a/b. Возведем все в квадрат. 2=a^2/b^2. То есть 2b^2=a^2. Теперь рассуждаем. Слева чётное число, значит a тоже чётное. Но чётный квадрат всегда делится на 4. Значит, b^2 тоже чётный. Но тогда а и b оба четные и дробь a/b можно сократить. Но мы условились, что дробь несократима. Противоречие. Значит, число √2 нельзя выразить дробью, то есть оно иррациональное.
4) Действительные - это все числа, и рациональные и иррациональные.
5) Действительные числа можно представить в виде точек на координатной прямой, причём это все точки на прямой.
6) Натуральные N, целые Z, рациональные Q, действительные R. Круги Эйлера нарисовать не могу, но могу объяснить. Действительные - самый большой круг, рациональные внутри, целые внутри рац-ных, натуральные внутри целых.