В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Амиiskdhdm
Амиiskdhdm
24.07.2021 14:41 •  Алгебра

Возведи дробь (−g43)2 в степень.

Выбери правильный вариант (варианты) ответа:
g79
g83
19g8
−g89
−g73
g89

Показать ответ
Ответ:
ivanpanyushkin1
ivanpanyushkin1
02.12.2021 23:08

1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.

2. Да

3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.

4. Да

5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.

6.  Да

7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.

8. Да

9. Да

10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.

11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.

12. Да

13. Да.

0,0(0 оценок)
Ответ:
Dollyy
Dollyy
10.12.2021 08:02
1. В задании дана функция y = f(x). Вид данной функции f(x) определен дополнительным равенством f(x) = tgx. По требованию задания докажем равенство f(2 * x + 2 * π) + f(7 * π – 2 * x) = 0. По сути говоря, нам необходимо доказать равенство tg(2 * x + 2 * π) + tg(7 * π – 2 * x) = 0, чем и будем заниматься в дальнейшем.
2. Анализ равенства показывает, что в его левой части имеется сумма двух слагаемых, каждый из которых представляет собой значение тангенс функции для различных углов. Первое слагаемое, после применения переместительного свойства сложения к его аргументу, примет вид tg(2 * π + 2 * х), а формула приведения tg(2 * π + α) = tgα позволит его записать как tg(2 * x).
3. Для преобразования второго слагаемого вспомним о периодичности тангенс функции. Как известно, тангенс функция имеет наименьший положительный период, равный π. Следовательно, из аргумента выражения tg(7 * π – 2 * x) можно отбросить 7 * π. Тогда, tg(7 * π – 2 * x) = tg(-2 * x). Наконец, учитывая нечётность тангенс функции, левая часть доказываемого равенства примет вид: tg(2 * x) + tg(–2 * x) = tg(2 * x) - tg(2 * x) = 0. Что и требовалось доказать.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота