Но если, как это делается в школе, рассматривать только действительные корни, и при этом два равных корня считать одним, то при таких условиях уравнение будет иметь 2 корня только в случае, если дискриминант положителен.
Для доказательства достаточно подставить вместо х предложенное значение и выяснить, будет ли равенство верным. а) х= 3 3²-4·3+3=0 9-12+3=0 0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7 2·(-7)²+(-7)-3=0 98-7-3=0 88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
Вообще говоря, квадратное уравнение ВСЕГДА имеет 2 корня. Они могут быть:
1) разными действительными числами (если дискриминант уравнения положителен);
2) одинаковыми действительными числами (если дискриминант равен нулю);
3) комплексными сопряжёнными числами (если дискриминант отрицателен).
Но если, как это делается в школе, рассматривать только действительные корни, и при этом два равных корня считать одним, то при таких условиях уравнение будет иметь 2 корня только в случае, если дискриминант положителен.
а) х= 3
3²-4·3+3=0
9-12+3=0
0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7
2·(-7)²+(-7)-3=0
98-7-3=0
88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
в) х= -5
2·(-5)² - 3·(-5) - 65 =0
50+15-65 = 0
0 = 0 - верное равенство, значит, число -5 является корнем уравнения 2х² -3х-65=0.
г) х=6
6²-2·6+6=0
36-12+6 = 0
30≠0 - неверное равенство, значит, число 6 не является корнем уравнения х²-2х+6=0.