Берем первое выражение x6+x5+2x4+2x3+4x2+4x=0 выносим х в третьей степени за скобки х3(х3+х2+2х+2)=0 х3=0 либо (х3+х2+2х+2)=0 х=0 решим получившиеся уравнение х3+х2+2х+2=0 (далее способом группировки,разбиваем многочлен на множители. (х3+2х) +(х2+2)=0) х(х2+2) + 1(х2+2)=0 (х+1)*(х2+2)=0 х+1=0 либо х2+2=0 х= -1 х2=-2 (решений нет) теперь берем второе выражение 3x4+3x3+6x2+6x=0выносим за скобки 3х3х(х3+х2+2х+2)=03х=0 либо х3+х2+2х+2 =0х=0решим получившиеся уравнение х3+х2+2х+2 =0используя способ группировки,мы разбиваем многочлен на множителих(х2+2)+1(х2+2)=0(х+1)*(х2+2)=0х+1=0 либо х2+2=0х= -1 х2= -2(решений нет)общие корни уравнений : 0 и -1.ответ : 0,-1
Площадь области, которую нужно засыпать песком = площадь квадрата всей площадки – площадь квадрата под качели.
Sквадрата = а^2, где а — сторона квадрата.
S квадрата всей площадки = (12.4м)^2
S квадрата качелей = (2.4м)^2
Воспользуемся формулой разности квадратов: a^2 – b^2 = (a – b)(a + b)
S искомой области = (12.4м)^2 – (2.4м)^2 = (12.4м – 2.4м)(12.4м + 2.4м) = 10м * 14.8м = 148 м^2
Или "вручную", без формулы:
12.4^2 – 2.4^2 = (124/10)^2 – (24/10)^2 = (62/5)^2 – (12/5)^2 = (62^2)/(5^2) – (12^2)/(5^2) = (62^2 – 12^2) / 5^2 = (3844 – 144) / 25 = 3700 / 25 = (:5) = 740 / 5 = (:5) = 148