Впрямом параллелепипеде диагонали образуют с плоскостью основания угол 45° и 60°.стороны основания равны 17 см и 31 см. вычислить диагонали параллелепипеда если боковое ребро равно 10 см
Теорема Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком. и Обратная теорема Виета если угадаем числа, такие, что их сумма опять же для приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком то эти числа - корни уравнения, при условии, что дискриминант неотрицателен.
По Виету сумма корней 13, один корень есть, тогда второй корень
13-3=10
и по тому же Виету произведение корней равно свободному члену q=3*10=30
Пусть скорость мотоциклиста x км/ч, тогда скорость велосипедиста (x–45) км/ч.
Расстояние между городами равно 60 км, тогда время в пути, которое затратили мотоциклист и велосипедист, равно соответственно 60/x часа и 60/(45 – x) часа.
Так как велосипедист был в пути на 3 часа дольше, чем мотоциклист.
Теорема Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком. и Обратная теорема Виета если угадаем числа, такие, что их сумма опять же для приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком то эти числа - корни уравнения, при условии, что дискриминант неотрицателен.
По Виету сумма корней 13, один корень есть, тогда второй корень
13-3=10
и по тому же Виету произведение корней равно свободному члену q=3*10=30
Решение
Пусть скорость мотоциклиста x км/ч, тогда скорость велосипедиста (x–45) км/ч.
Расстояние между городами равно 60 км, тогда время в пути, которое затратили мотоциклист и велосипедист, равно соответственно 60/x часа и 60/(45 – x) часа.
Так как велосипедист был в пути на 3 часа дольше, чем мотоциклист.
Составим и решим уравнение:
60/(x – 45) - 60/x = 3
x ≠ 45, x ≠ 0
(60x – 60x + 2700 – 3x^2 + 135x) / x(x – 45) = 0
x² – 45x – 900 = 0
x₁= - 15 не удовлетворяет условию задачи
x₂ = 60
Итак, скорость мотоциклиста 60 км/ч,
60 - 45 = 15 км/ч. - скорость велосипедиста
ответ: 15 км/ч.