Какое наименьшее количество различных трехзначных чисел нужно взять, чтобы среди них наверняка было бы одно число, оканчивающееся НЕ на нуль - на одно больше чем количество различных трехзначных чисел оканчивающееся на нуль
Найдем количество различных трехзначных чисел оканчивающееся на нуль, последняя цифра 0 (1 вариант выбора), первая любая цифра от 1 до 9 (9 вариантов выбора), вторая - любая цифра от 0 до 9 (10 вариантов выбора), по правилу умножения событий, получаем что всего таких чисел 9*10*1=90
В треугольнике против большего угла лежит большая сторона. Тогда в треугольнике ВСД сторона ВС лежит против тупого угла, а сторона ВД против угла 300. Тогда ВС больше ВД
А так как АВ = ВС, то и АВ больше ВД, что и требовалось доказать.
91
Объяснение:
Какое наименьшее количество различных трехзначных чисел нужно взять, чтобы среди них наверняка было бы одно число, оканчивающееся НЕ на нуль - на одно больше чем количество различных трехзначных чисел оканчивающееся на нуль
Найдем количество различных трехзначных чисел оканчивающееся на нуль, последняя цифра 0 (1 вариант выбора), первая любая цифра от 1 до 9 (9 вариантов выбора), вторая - любая цифра от 0 до 9 (10 вариантов выбора), по правилу умножения событий, получаем что всего таких чисел 9*10*1=90
а значит нужно 91 число (90+1=91)
Для решения рассмотрим рисунок
Первый
Определим величину угла АСВ.
Угол АСВ = (180 – АВС – ВАС) = (180 – 120 – 30) = 300.
Тогда треугольник АВС равнобедренный, АВ = ВС.
В треугольнике против большего угла лежит большая сторона. Тогда в треугольнике ВСД сторона ВС лежит против тупого угла, а сторона ВД против угла 300. Тогда ВС больше ВД
А так как АВ = ВС, то и АВ больше ВД, что и требовалось доказать.
Второй
В треугольнике АВС угол АСВ = (180 – 120 – 30) = 300.
Так как точка Д расположена на отрезке АС, то в треугольнике АВД угол АДВ всегда будет больше 300, если точка Д не совпадает с точкой С.
Тогда угол АДВ > ВАД, в следовательно и АВ > ВД, что и требовалось доказать
Объяснение: