В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vladaua2005p06s4b
vladaua2005p06s4b
08.08.2021 09:35 •  Алгебра

Вроде как просто должно быть, но вот не знаю механизма решения... Для каждого значения a решите неравенство:
|x+1|<=2a-1

Показать ответ
Ответ:
Юсик1854
Юсик1854
07.07.2021 23:20

|x+1|\leq 2a-1

Рассмотрим 3 случая: с отрицательной, нулевой и положительной правой частью.

1. Если 2a-1, то есть a.

Тогда предполагается, что модуль должен принимать значения, не большие некоторого отрицательного, то есть тоже отрицательные. Но модуль не может принимать отрицательных значений. Значит, в этом случае неравенство решений не имеет.

2. Если 2a-1=0, то есть a=\dfrac{1}{2}.

Получаем неравенство:

|x+1|\leq 0

Поскольку модуль не принимает отрицательных значений, достаточно решить уравнение:

|x+1|=0

x+1=0

x=-1

3. Если 2a-10, то есть a\dfrac{1}{2}, то получаем неравенство с положительной правой частью:

|x+1|\leq 2a-1

Заменим его следующим двойным неравенством:

-(2a-1)\leq x+1\leq 2a-1

1-2a\leq x+1\leq 2a-1

1-2a-1\leq x\leq 2a-1-1

-2a\leq x\leq 2a-2

Таким образом получаем ответ:

при a: решений нет

при a=\dfrac{1}{2}: x=-1

при a\dfrac{1}{2}: x\in[-2a;\ 2a-2]

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота