1) 3a - 27/4a-36
в числителе выноси общий множитель 3 а в знаменателе 4
и будет 3(а - 9)/4(а - 9) и то что в скобках сокращаем (потому что оно одинаковое) = 3/4
2) 11(d+6)^8 / 88(d+6) = (d+ 6)^8/8
4) Приведи дроби x^2 / x^2−u2 и x−u / 7x+7u к общему знаменателю.
5. 7x^2 / 7(x+u)(x−u) и x^2−2xu+u^2 / 7(x+u)(x−u) (правильный)
5) 3x / x−11 и 8y / x+11
4. 3x^2+33x / x^2−121 и 8yx−88y / x^2−121 (правильный)
Сократите дробь 5m+an−5n−am / a^2−10a+25 до знаменателя 5−a
5m+an−5n−am / a^2−10a+25 = (5 - а)(m - n)/(5 - a)^2 = m - n/ 5 - a
mn+22=5m
n + 22/m =5
n = 5 - 22/m
Если m, n - натуральные, то очевидно, что число 22/m - также должно быть натуральным, т.е. 22 кратно m =>
m =1; 2; 11; 22. Другие значения m не являются натуральными числами.
Подставив полученные значения m, выберем те, при которых n - также натуральное число^
m = 1: n = 5 - 22 = -17 ∉ N
m = 2; n = 5 - 22/2 = -5 ∉ N
m = 11; n = 5- 22/11 = 3 ∈ N - решение
m = 22: n = 5 - 22/22 = 4 ∉ N - решение
Отсюда: уравнение mn+22=5m в натуральных числах имеет 2 решения (m; n):
(11; 3) и (22; 4)
1) 3a - 27/4a-36
в числителе выноси общий множитель 3 а в знаменателе 4
и будет 3(а - 9)/4(а - 9) и то что в скобках сокращаем (потому что оно одинаковое) = 3/4
2) 11(d+6)^8 / 88(d+6) = (d+ 6)^8/8
4) Приведи дроби x^2 / x^2−u2 и x−u / 7x+7u к общему знаменателю.
5. 7x^2 / 7(x+u)(x−u) и x^2−2xu+u^2 / 7(x+u)(x−u) (правильный)
5) 3x / x−11 и 8y / x+11
4. 3x^2+33x / x^2−121 и 8yx−88y / x^2−121 (правильный)
Сократите дробь 5m+an−5n−am / a^2−10a+25 до знаменателя 5−a
5m+an−5n−am / a^2−10a+25 = (5 - а)(m - n)/(5 - a)^2 = m - n/ 5 - a
mn+22=5m
n + 22/m =5
n = 5 - 22/m
Если m, n - натуральные, то очевидно, что число 22/m - также должно быть натуральным, т.е. 22 кратно m =>
m =1; 2; 11; 22. Другие значения m не являются натуральными числами.
Подставив полученные значения m, выберем те, при которых n - также натуральное число^
m = 1: n = 5 - 22 = -17 ∉ N
m = 2; n = 5 - 22/2 = -5 ∉ N
m = 11; n = 5- 22/11 = 3 ∈ N - решение
m = 22: n = 5 - 22/22 = 4 ∉ N - решение
Отсюда: уравнение mn+22=5m в натуральных числах имеет 2 решения (m; n):
(11; 3) и (22; 4)