Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 50.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=50
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=50
2n+1+2n+5=50
4n=44
n=11
11; 12; 13; 14
(14²-13²)+(12²-11²)=27+23
27+23=50 - верно
Подробнее - на -