x=arcctg(3.4)
Объяснение:
5sinx+17cosx=√314.
25sin²x + 289cos²x + 170sinxcosx = 314.
25sin²x + 289cos²x + 170sinxcosx = 314(sin²x + cos²x)
25 + + 289 ctg²x + 170ctgx = 314 + 314ctg²x
314ctg²x - 289 ctg²x - 170ctgx + 314-25 = 0
25 ctg²x - 170ctgx + 289 = 0.
(5ctgx - 17)² = 0
±(5ctgx - 17)=0
5ctgx - 17 = 0 и -5ctgx + 17 = 0
5ctgx =17
ctgx = 17/5 =3.4
x=arcctg(3.4)
Объяснение:
5sinx+17cosx=√314.
Возведем в квадрат.25sin²x + 289cos²x + 170sinxcosx = 314.
25sin²x + 289cos²x + 170sinxcosx = 314(sin²x + cos²x)
Разделим на cos²x. (Прим: )25 + + 289 ctg²x + 170ctgx = 314 + 314ctg²x
314ctg²x - 289 ctg²x - 170ctgx + 314-25 = 0
25 ctg²x - 170ctgx + 289 = 0.
Заметим формулу a² - 2ab + b². Свернем по этой формуле.(5ctgx - 17)² = 0
Найдем корни данного уравнения:±(5ctgx - 17)=0
Разбиваем на два уравнения5ctgx - 17 = 0 и -5ctgx + 17 = 0
Заметим, что это одно и то же. Решим первое уравнение.5ctgx =17
ctgx = 17/5 =3.4
x=arcctg(3.4)
х² -2х*2 +4 - 4 +3 = 0
(х-2)² = 1
х -2 = 1 или х -2 = -1
х = 3 х = 1
2)x^2 - 6x+5=0
х² -2х*3 +9 -9 +5 = 0
(х-3) = 4
х-3 = 2 или х -3 = -
х = 5 х = -1
3)x^2+8x-20=0
х² +2х*4 +16 -16 -20 = 0
(х+4)² = 4
х +4 = 2 или х +4= -2
х = -2 х = -6
4)x^2+12x+32=0
х² +2х*6 +36 -36 +32 = 0
(х +6)² = 4
х +6 = 2 или х +6 = -2
х = -4 х = -8
5)x^2-2x-15=0
х² -2х*1 +1 -1 -15 = 0
(х-1)² = 16
х-1 = 4 или х-1 = -4
х = 5 х = -3
6)X^2-4x-45=0
х² -2х *2 +4 -4 -45 =0
(х-2)² = 49
х-2 = 7 или х -2 = -7
х = 9 х = -5