Скорость первого рабочего v₁ деталей в минуту Скорость второго рабочего v₂ деталей в минуту Пусть в партии S деталей. Тогда (S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии. S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию. Если х - искомое количество деталей, то (S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии. Отсюда x=S(1-v₂/(2v₁)). Из 1-го и 2-го уравнений получим v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е. S^2=2(S-8)(S-15). Решаем это квадратное уравнение, получаем корни 6 и 40. 6 не подходит, т.к. количество деталей больше 6. Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24. ответ: 24 детали.
Найдите наибольшее и наименьшее значения заданной функции на заданном промежутке: a) y = (2x + 50)/(x - 1), [1;10] Это гипербола у = 52/(х - 1) + 2 с точкой разрыва х = 1. Максимума функция не имеет, в том числе и на заданном промежутке. Минимум на заданном промежутке при х = 10, у = 70/9.
б) y=8 - 5x, [-1;1]. Это прямая, функция убывающая. Максимум на заданном промежутке при х = -1, у = 8+5=13. Минимум на заданном промежутке при х = 1, у = 8-5 = 3.
в) y=3 - cos x, [пи/3; 3пи/2]. При х = π cos = -1, тогда у = 3 + 1 = 4. Это максимум. Минимум равен 5/2 при х = π/3.
г)y=12 + x^2 - x^3/3, (-∞; 1] Производная y' = -x²+2x = -x(x - 2). Приравняв нулю, имеем 2 критические точки х = 0 и х = 2. У функции есть локальный максимум при х = 2 у = 40/3, минимум при х = 0. у = 12. Глобальных минимума и максимума нет.
№2.
Представьте число 9 в виде суммы двух положительных слагаемых так, чтобы сумма удвоенного первого слагаемого и квадрата второго слагаемого была наименьшей. у = 2х + (9-х)² = 2x + 81 - 18x + x² = x² - 16x + 81. y' = 2x - 16 = 2(x -8). Приравняем производную нулю: 2(x -8) = 0, х = 8. Проверяем: 2*8 + 1 = 17. х = 5 у = 2*5 + 9 = 19. Значит, первое слагаемое 1, а второе 8. у = 2 + 64 = 66. Проверим х = 2, у = 4 + 49 = 53 правильно.
№3.
Садовод на своём дачном участке решил огородить прямоугольную клумбу заборчиком длиной 12 м. Каковы должны быть размеры клумбы, чтобы её площадь была наибольшей? Максимум площади при заданном периметре - у квадрата. S = (12/4)² = 9 м².
Скорость второго рабочего v₂ деталей в минуту
Пусть в партии S деталей.
Тогда
(S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии.
S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию.
Если х - искомое количество деталей, то
(S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии.
Отсюда x=S(1-v₂/(2v₁)).
Из 1-го и 2-го уравнений получим
v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е.
S^2=2(S-8)(S-15).
Решаем это квадратное уравнение, получаем корни 6 и 40.
6 не подходит, т.к. количество деталей больше 6.
Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24.
ответ: 24 детали.
Найдите наибольшее и наименьшее значения заданной функции на заданном промежутке:
a) y = (2x + 50)/(x - 1), [1;10]
Это гипербола у = 52/(х - 1) + 2 с точкой разрыва х = 1.
Максимума функция не имеет, в том числе и на заданном промежутке.
Минимум на заданном промежутке при х = 10, у = 70/9.
б) y=8 - 5x, [-1;1]. Это прямая, функция убывающая.
Максимум на заданном промежутке при х = -1, у = 8+5=13.
Минимум на заданном промежутке при х = 1, у = 8-5 = 3.
в) y=3 - cos x, [пи/3; 3пи/2].
При х = π cos = -1, тогда у = 3 + 1 = 4. Это максимум.
Минимум равен 5/2 при х = π/3.
г)y=12 + x^2 - x^3/3, (-∞; 1]
Производная y' = -x²+2x = -x(x - 2).
Приравняв нулю, имеем 2 критические точки х = 0 и х = 2.
У функции есть локальный максимум при х = 2 у = 40/3,
минимум при х = 0. у = 12.
Глобальных минимума и максимума нет.
№2.
Представьте число 9 в виде суммы двух положительных слагаемых так, чтобы сумма удвоенного первого слагаемого и квадрата второго слагаемого была наименьшей.
у = 2х + (9-х)² = 2x + 81 - 18x + x² = x² - 16x + 81.
y' = 2x - 16 = 2(x -8).
Приравняем производную нулю: 2(x -8) = 0, х = 8.
Проверяем: 2*8 + 1 = 17.
х = 5 у = 2*5 + 9 = 19.
Значит, первое слагаемое 1, а второе 8.
у = 2 + 64 = 66.
Проверим х = 2, у = 4 + 49 = 53 правильно.
№3.
Садовод на своём дачном участке решил огородить прямоугольную клумбу заборчиком длиной 12 м. Каковы должны быть размеры клумбы, чтобы её площадь была наибольшей?
Максимум площади при заданном периметре - у квадрата.
S = (12/4)² = 9 м².