Всистеме координат дана точка с координатами p(2; 2) . определи координаты точки p1 , которая получена после выполнения поворота точки p вокруг начальной точки координат на угол 270° .
Пусть x км/ч - скорость 1-го поезда, y км/ч - скорость 2-го поезда.
Известно, что на половину пути (120 / 2 = 60 км) первый поезд затратил на 2 часа больше, чем второй, т.е. справедливо уравнение: \frac{60}{x}- \frac{60}{y} =2
После встречи поезда едут в разные стороны ровно 1 час и расстояние между ними становится 80 км, т.е. справедливо уравнение: x*1+y*1=80
Пусть расстояние от города А до города В 1 (единица), х (ч) время за которое мотоциклист проехал расстояние от города А до города В, тогда по условию: х+3 (ч) время за которое пешеход от города А до города В (т.к. он вышел на 1 час раньше мотоциклиста из города А, но пришёл позже на 2 часа в город В. 1+2=3 (ч) разница) , 3-х (ч) время которое велосипедист был в пути, пока не начал движение мотоциклист из города А. Следовательно:
1÷х=1/х (рас/ч) скорость мотоциклиста.
1÷(х+30)=1/(х+3) (рас/ч) скорость пешехода.
(1/х)-(1/(х+3))=(х+3-х)/(х(х+3))=3/(х(х+3)) (рас/ч) скорость сближения мотоциклиста с пешеходом.
1*(1/(х+3))=1/(х+3) (км пешеход, пока не начал движение мотоциклист. (т.е. это расстояние между пешеходом и мотоциклистом, когда мотоциклист начал движение.)
1/(х+3)÷(3/(х(х+3))=1/(х+3)*(х(х+3))/3=х/3 (ч) время за которое мотоциклист проехал до встречи с пешеходом и велосипедистом.
(х/3)*(1/х)=1/3 (рас) от города А, где произошла встреча . (т.е. на расстоянии 1/3 от города А произошла встреча мотоциклиста с пешеходом и велосипедистом.)
1-(1/3)=2/3 (рас) проехал велосипедист от города В до встречи с пешеходом и мотоциклистом.
(3-х)+(х/3)=(9-3х+х)/3=(9-2х)/3 (ч) время, за которое велосипедист от города В проехал 2/3 пути до встречи.
((9-2х)/3)÷(2/3)=(9-2х)/2=4,5-х (ч) время, за которое велосипедист проехал весь путь, от города В до города А.
(4,5-х)-(3-х)=4,5-х-3+х=1,5 (ч). Через 1,5 часа после выезда мотоциклиста, велосипедист прибыл в город А.
Известно, что на половину пути (120 / 2 = 60 км) первый поезд затратил на 2 часа больше, чем второй, т.е. справедливо уравнение: \frac{60}{x}- \frac{60}{y} =2
После встречи поезда едут в разные стороны ровно 1 час и расстояние между ними становится 80 км, т.е. справедливо уравнение: x*1+y*1=80
Получаем систему уравнений:
\left \{ {{ \frac{60}{x} -\frac{60}{y}=2} \atop {x+y=80}} \right.
\left \{ {{ 60y-60x=2xy} \atop {y=80-x}} \right.
\left \{ {{ 30(80-x)-30x=x(80-x)} \atop {y=80-x}} \right.
Отдельно 1-е уравнение:
2400-30x-30x-80x+x^{2}=0
x^{2}-140x+2400=0
\frac{D}{4} =(-70)^{2}-2400=2500
x_{1} =70-50=20
x_{2} =70+50=120
y_{1} =80-20=60
y_{2} =80-120<0 не удовлетворяет усл. задачи, значит, и х = 120 нам не подходит.
Значит, скорость 1-го поезда = 20 км/ч и расстояние от А до В он пройдет за 120/20 = 6 часов.
ответ: 6 часов.
Пусть расстояние от города А до города В 1 (единица), х (ч) время за которое мотоциклист проехал расстояние от города А до города В, тогда по условию: х+3 (ч) время за которое пешеход от города А до города В (т.к. он вышел на 1 час раньше мотоциклиста из города А, но пришёл позже на 2 часа в город В. 1+2=3 (ч) разница) , 3-х (ч) время которое велосипедист был в пути, пока не начал движение мотоциклист из города А. Следовательно:
1÷х=1/х (рас/ч) скорость мотоциклиста.
1÷(х+30)=1/(х+3) (рас/ч) скорость пешехода.
(1/х)-(1/(х+3))=(х+3-х)/(х(х+3))=3/(х(х+3)) (рас/ч) скорость сближения мотоциклиста с пешеходом.
1*(1/(х+3))=1/(х+3) (км пешеход, пока не начал движение мотоциклист. (т.е. это расстояние между пешеходом и мотоциклистом, когда мотоциклист начал движение.)
1/(х+3)÷(3/(х(х+3))=1/(х+3)*(х(х+3))/3=х/3 (ч) время за которое мотоциклист проехал до встречи с пешеходом и велосипедистом.
(х/3)*(1/х)=1/3 (рас) от города А, где произошла встреча . (т.е. на расстоянии 1/3 от города А произошла встреча мотоциклиста с пешеходом и велосипедистом.)
1-(1/3)=2/3 (рас) проехал велосипедист от города В до встречи с пешеходом и мотоциклистом.
(3-х)+(х/3)=(9-3х+х)/3=(9-2х)/3 (ч) время, за которое велосипедист от города В проехал 2/3 пути до встречи.
((9-2х)/3)÷(2/3)=(9-2х)/2=4,5-х (ч) время, за которое велосипедист проехал весь путь, от города В до города А.
(4,5-х)-(3-х)=4,5-х-3+х=1,5 (ч). Через 1,5 часа после выезда мотоциклиста, велосипедист прибыл в город А.
Задача решена.
ответ: через 1,5 часа.