{х<2/3 {х<1/2 Х принадлежит (2/3, +бесконечность) Х принадлежит (-бесконечность, 1/2) Х принадлежит (-бесконечность, 1/2) U Х принадлежит (2/3, +бесконечность)
Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов.
Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
6x^2-7x+2>0
6x^2-3х-4х+2>0
3х*(2х-1)-2(2х-1)>0
(3х-2)*(2х-1)>0
{3х-2>0
{2х-1>0
{3х-2<0
{2х-1<0
{х>2/3
{х>1/2
{х<2/3
{х<1/2
Х принадлежит (2/3, +бесконечность)
Х принадлежит (-бесконечность, 1/2)
Х принадлежит (-бесконечность, 1/2) U Х принадлежит (2/3, +бесконечность)
в)
8x^2+10x-3 <0
8x^2+12-2х-3<0
4х*(2х+3)-(2х+3)<0
(4х-1) *(2х+3)<0
{4х-1<0
{2х+3>0
{4х-1>0
{2х+3<0
{х<1/4
{х>-3/2
{х>1/4
{х<-3/2
Х принадлежит (-3/2, 1/4)
Х принадлежит Ø
Х принадлежит (-3/2, 1/4)
Пусть первая выполняет за час х , вторая выполняет за час у.
Вместе они за час выполняют (х+у).
За четыре часа 4·(х+у) Что и равно все работе,т. е 1
4(х+у)=1
Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов.
Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов.
Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов