Втрапеции abcd (ad ∥ bc, ad > bc) на диагонали ac выбрана точка e так, что be ∥ cd. площадь треугольника abc равна 10. найдите площадь треугольника dec.
Треугольники DEC и DKC равновеликие,т.к. у них общее основание CD , а высоты, проведённые из вершин E и K на основание CD равны, так как КЕ||CD.
Треугольники ABC и CDK равновелики, т.к. у них равны основания ( DK = BC ) и высоты, проведённые из вершин A и C , поскольку BC || AD . Следовательно, треугольники ABC и DEC также равновелики.
рисунок в приложении
Треугольники DEC и DKC равновеликие,т.к. у них общее основание CD , а высоты, проведённые из вершин E и K на основание CD равны, так как КЕ||CD.
Треугольники ABC и CDK равновелики, т.к. у них равны основания ( DK = BC ) и высоты, проведённые из вершин A и C , поскольку BC || AD . Следовательно, треугольники ABC и DEC также равновелики.
Значит площадь DEC равна 10 см²