Нам известны основания a и b рваные 18+5=23 и 12 соответственно.
Нам неизвестна высота, но дан прямоугольный треугольник с острым углом в 45° => находим второй угол прямоугольного треугольника: 180-(90+45) = 45° => углы при основании равны, а значит это равнобедренный треугольник, и высота равна 5.
Объяснение:
A1.
x²-8x+12=0
Д=8²-4*12=64-48=16
x1=(8-4)/2 = 2
x2=(8+4)/2 = 6
A2.
√60/√15 = √(15*4)/√15 = √15 * √4 /√15 = √4 = 2
A3.
-8-x<4x+2
-8-2<4x+x
-10<5x
-2<x
x€(-2;+°°)
A4
Площадь трапеции рассчитывается по формуле:
S= h* (a+b)/2
Нам известны основания a и b рваные 18+5=23 и 12 соответственно.
Нам неизвестна высота, но дан прямоугольный треугольник с острым углом в 45° => находим второй угол прямоугольного треугольника: 180-(90+45) = 45° => углы при основании равны, а значит это равнобедренный треугольник, и высота равна 5.
подставляем:
S= 5*(23+12)/2 = 5*35/2 = 87,5
В решении.
Объяснение:
По теореме Пифагора в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Выбрать прямоугольные треугольники:
1) (3√2)² = 9*2 = 18; (2√2)² = 4*2 = 8; (√26)² = 26;
18 + 8 = 26, является.
2) (√3)² = 3; (√11)² = 11; (√14)² = 14;
3 + 11 = 14, является.
3) (√19)² = 19; 2² = 4; (√23)² = 23;
19 + 4 = 23, является.
4) (2√11)² = 4*11 = 44; (√30)² = 30; (√15)² = 15;
30 + 15 ≠ 44, не является.
5) (√11)² = 11; (2√7)² = 28; (√17)² = 17;
11 + 17 = 28, является.
6) (2√3)² = 12; 6² = 36; (2√6)² = 24;
12 + 24 = 36, является.
7) (√14)² = 14; (√15)² = 15; (√23)² = 23;
14 + 15 ≠ 23, не является.