Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
1)Решение системы уравнений (4; 1);
2)Решение системы уравнений (-1; -2).
Объяснение:
Решить систему уравнений сложения:
1)х+2у=6
3х-4у=8
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
2х+4у=12
3х-4у=8
Складываем уравнения:
2х+3х+4у-4у=12+8
5х=20
х=20/5
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+4у=12
4у=12-2х
4у=12-2*4
4у=12-8
4у=4
у=1
Решение системы уравнений (4; 1)
2)5х+2у= -9
-5у+4х=6
Первое уравнение умножить на 2,5:
12,5х+5у= -22,5
-5у+4х=6
Складываем уравнения:
12,5х+4х+5у-5у= -22,5+6
16,5х= -16,5
х= -16,5/16,5
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
5х+2у= -9
2у= -9-5х
2у= -9-5*(-1)
2у= -9+5
2у= -4
у= -4/2
у= -2
Решение системы уравнений (-1; -2)
1) Найдите корень уравнения log₄ (16- 2x)= 2 log₄ 3
log₄ (16- 2x)= 2 log₄ 3 ⇔log₄ (16- 2x)= log₄ 3² ⇔ 16 - 2x = 3² ⇔ x =3,5.
ответ : x =3,5 .
* * * * * * * * * * * *
2) Найдите точку минимума функции: y= x³ - 13x²- 9x+ 2
Определяем критические точки функции : y ' =0 .
y ' = (x³ - 13x²- 9x+ 2) ' =(x³) ' -(13x²)' - (9x) '+ (2) ' =3x² -13*(x²)' - 9*(x) ' +0 =
=3x² -13*2x - 9*1 = 3x² -2*13x - 9 .
3x² -2*13x - 9 =0 D₁ =13² -3*(-9) =169 +27 =196 =14²
x₁ = (13 -14) / 3 = -1/3 ,
x₂ = (13+14) / 3 = 9.
y ' = 3(x+1/3)(x-9)
y ' "+" "- " "+"
(-1/3) (9)
y ↑ (возрастает) ↓ (убывает) ↑ (возрастает)
max min
ответ : x = 9 ( точка минимума )