1) 90+70 = 160 (м/мин) - скорость сближения пешеходов 2) 16 км = 16 000 м - расстояние между А и В 3) 16 000 - 800 = 15 200 (м) - пройдут пешеходы вместе, пока между ними не останется расстояние 800 м 4) 15200: 160 = 95 (мин)=1 ч 35 мин - время движения пешеходов до момента, когда расстояние между ними останется 800 м 5) 16 000:160 = 100 (мин)=1 ч 40 мин - время до встречи пешеходов 6) 9 ч + 1 ч 35 мин = 10 ч 35 мин - столько времени будет на часах, когда между пешеходами останется 800 м 7) 9 ч + 1 ч 40 мин = 10 ч 40 мин - время встречи пешеходов
Итак, в течение времени с 10:36 до 10:40 расстояние между пешеходами будет менее 800 м.
Пусть первая труба заполняет бассейн за х часов, тогда скорость заполнения бассейна первой трубой равна (1/х) . Пусть вторая труба заполняет бассейн за у часов, тогда скорость заполнения бассейна второй трубой (1/у) . Пусть третья труба заполняет бассейн за z часов, тогда скорость заполнения бассейна третьей трубой (1/z) . Пусть четвертая труба заполняет бассейн за u часов, тогда скорость заполнения бассейна второй трубой (1/u).
Скорость заполнения бассейна четырьмя трубами: (1/х)+(1/у)+(1/z)+(1/u) Время заполнения четырьмя трубами 1/((1/х)+(1/у)+(1/z)+(1/u)) равно 4 часа или (1/х)+(1/у)+(1/z)+(1/u)=1/4 Первая, вторая и четвертая трубы заполняют бассейн за 6 часов. 1/((1/х)+(1/у)+(1/u)) = 6 или (1/х)+(1/у)+(1/u)=1/6 Вторая, третья и четвертая – за 5 часов. 1/((1/у)+(1/z)+(1/u))=5 или (1/у)+(1/z)+(1/u)=1/5
Получаем систему трех уравнений: {(1/х)+(1/у)+(1/z)+(1/u)=1/4 {(1/х)+(1/у)+(1/u)=1/6 {(1/у)+(1/z)+(1/u)=1/5
из первого и второго уравнений 1/z=(1/4)–(1/6)=1/12 из первого и третьего уравнений 1/x=(1/4)–(1/5)=1/20 Находим сумму (1/x)+(1/z)=(1/20)+(1/12)=2/15 t=1/((1/x)+(1/z)) t=1/(2/15)=15/2=7,5 часов. О т в е т. 7,5 часов.
2) 16 км = 16 000 м - расстояние между А и В
3) 16 000 - 800 = 15 200 (м) - пройдут пешеходы вместе, пока между ними не останется расстояние 800 м
4) 15200: 160 = 95 (мин)=1 ч 35 мин - время движения пешеходов до момента, когда расстояние между ними останется 800 м
5) 16 000:160 = 100 (мин)=1 ч 40 мин - время до встречи пешеходов
6) 9 ч + 1 ч 35 мин = 10 ч 35 мин - столько времени будет на часах, когда между пешеходами останется 800 м
7) 9 ч + 1 ч 40 мин = 10 ч 40 мин - время встречи пешеходов
Итак, в течение времени с 10:36 до 10:40 расстояние между пешеходами будет менее 800 м.
Пусть вторая труба заполняет бассейн за у часов, тогда скорость заполнения бассейна второй трубой (1/у) .
Пусть третья труба заполняет бассейн за z часов, тогда скорость заполнения бассейна третьей трубой (1/z) .
Пусть четвертая труба заполняет бассейн за u часов, тогда скорость заполнения бассейна второй трубой (1/u).
Скорость заполнения бассейна четырьмя трубами:
(1/х)+(1/у)+(1/z)+(1/u)
Время заполнения четырьмя трубами
1/((1/х)+(1/у)+(1/z)+(1/u)) равно 4 часа
или
(1/х)+(1/у)+(1/z)+(1/u)=1/4
Первая, вторая и четвертая трубы заполняют бассейн за 6 часов.
1/((1/х)+(1/у)+(1/u)) = 6
или
(1/х)+(1/у)+(1/u)=1/6
Вторая, третья и четвертая – за 5 часов.
1/((1/у)+(1/z)+(1/u))=5
или
(1/у)+(1/z)+(1/u)=1/5
Получаем систему трех уравнений:
{(1/х)+(1/у)+(1/z)+(1/u)=1/4
{(1/х)+(1/у)+(1/u)=1/6
{(1/у)+(1/z)+(1/u)=1/5
из первого и второго уравнений
1/z=(1/4)–(1/6)=1/12
из первого и третьего уравнений
1/x=(1/4)–(1/5)=1/20
Находим сумму
(1/x)+(1/z)=(1/20)+(1/12)=2/15
t=1/((1/x)+(1/z))
t=1/(2/15)=15/2=7,5 часов.
О т в е т. 7,5 часов.