На тригонометрической окружности есть значения π/6, π/2, π/4 и так далее.
Пусть π ≈ 3, тогда значение π/6 ≈ 3/6 = 0,5 Если также рассмотреть, например π/3 ≈ 1 То есть можно сказать что точка 0,3 чуть ниже точки π/6. Соответственно значение sin в этой точке будет больше 0, не меньше 1/2 (значение в точке π/6)
Далее рассмотрим также sin(1,1). π/3 ≈ 1 ⇒ точка 1,1 находит чуть-чуть выше точки π/3 Отсюда можно сказать, что sin(1.1) ≈ √3/2
sin(-1.2) = -sin(1.2) Найдём местоположение sin(1.2) π/2 ≈ 3/2 = 1.5 π/3 ≈ 3/3 = 1 То есть sin(1,2) находится между значениями π/3 и π/2. sin(1.2) > 0 Но так как у нас выражение -sin(1.2), то значение будет меньше 0.
Итого sin(-1.2) единственный меньше нуля, а значит меньше всех. sin(1.1) ≈ √3/2 sin(0.3) ≈ 1/2 или меньше 1/2 < √3/2 ⇒ sin(0.3) < sin(1.1)
Пусть π ≈ 3, тогда значение π/6 ≈ 3/6 = 0,5
Если также рассмотреть, например π/3 ≈ 1
То есть можно сказать что точка 0,3 чуть ниже точки π/6. Соответственно значение sin в этой точке будет больше 0, не меньше 1/2 (значение в точке π/6)
Далее рассмотрим также sin(1,1).
π/3 ≈ 1 ⇒ точка 1,1 находит чуть-чуть выше точки π/3
Отсюда можно сказать, что sin(1.1) ≈ √3/2
sin(-1.2) = -sin(1.2)
Найдём местоположение sin(1.2)
π/2 ≈ 3/2 = 1.5
π/3 ≈ 3/3 = 1
То есть sin(1,2) находится между значениями π/3 и π/2. sin(1.2) > 0
Но так как у нас выражение -sin(1.2), то значение будет меньше 0.
Итого sin(-1.2) единственный меньше нуля, а значит меньше всех.
sin(1.1) ≈ √3/2
sin(0.3) ≈ 1/2 или меньше
1/2 < √3/2 ⇒ sin(0.3) < sin(1.1)
ответ: sin(-1.2), sin(0.3), sin(1.1)
(a2+1)/(a1+2)=(a3+7)/(a2+1)=q
По определению арифметической прогрессии
a1+a1+d+a1+2d=39
3a1+3d=39
a1+d=13
Составим систему уравнений {a1+d=13
{(a1+d+1)(a1+2)=(a1+2d+7)/(a1+d+1)
d=13-a1
(a1+13-a1+1)/(a1+2)=(a1+26-2a1+7)/(a1+13-a1+1)
14/(a1+2)=(-a1+33)/14
(a1+2)(33-a1)=14*14
33a1+66-a^2-2a1=196
-a1^2+31a1-130=0
a1=26 или a1=5
Если a1=26, то d=13-26=-13
a2=13
a3=0
Арифметическая прогрессия.
Геометрическая b1=26+2=28
b2=13+1=14
b3=0+7=7
Если а1=5,то d=13-5=8
a2=13
a3=21
Геометрическая прогрессия: b1=5+2=7
b2=13+1=14
b3=21+7=28