функция квадратичная вида ax²+bx+c - значит парабола
аргумент а - отрицательный, значит ветви параболы направлены вниз.
с=0, значит одна из ветвей пересекает ось Оу в точке с координатой у=0, если так, то и ось Ох она пересекает с координатой х=0, т.е. ветвь параболы проходит через начало координат.
График в файле.
Объяснение:
y=-6x²-3x
функция квадратичная вида ax²+bx+c - значит парабола
аргумент а - отрицательный, значит ветви параболы направлены вниз.
с=0, значит одна из ветвей пересекает ось Оу в точке с координатой у=0, если так, то и ось Ох она пересекает с координатой х=0, т.е. ветвь параболы проходит через начало координат.
находим точки пересечения с осью Ох
-6х²-3х=0
-3х(2х+1)=0
х1=0
2х+1=0
2х=-1
х2=-1/2
находим вершину параболы
х=-b/(2a)
x=3/-12=-1/4
y=-6*(-1/4)²-3*(-1/4)=3/8
(-1/4;3/8) - координаты вершины
Строим график.
Пара чисел (2;-2) являются точкой пересечения двух графиков. заданных уравнениями системы.
Общее уравнение прямой: Ах+Ву+С=0
х=2; у=-2
1 уравнение: пусть А=4; В=-4, тогда 4х-4у+С=0
4*2-4*(-2)=16
С=0-16=-16
4х-4у-16=0
2 уравнение: пусть А=8; В=1, тогда: 8х+у+С=0
8*2+1*(-2)=14
С=0-14=14
8х+у-14=0
{4x-4y-16=0 => x-y-4=0 => x=y+4
{8x+y-14=0 => 8(y+4)+y-14=0
9y=-18
y=-2
x=-2+4
x=2
Решением данной системы является пара чисел (2;-2)
Проверка: 4x-4y-16=8x+y-14
4х-8х-4у-у-16+14=0
-4х-5у-2=0
х=2; у=-2 - -4*2-5*(-2)-2=
-8+10-2=
-10+10=0
Выразим у через х для графического решения:
{4x-4y-16=0 =>у=х-4
{8x+y-14=0 => у=-8х+14
График во вложении