В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Мария13122002
Мария13122002
31.03.2020 19:34 •  Алгебра

Выбери верные ответы Испытание состоит в следующем: ИЗ
полного набора домино извлекается
одна костяшка и прочитываются числа
очков на её половинках. Определи,
совместными или несовместными
являются события.
1) Одно число равно 2; второе число
нечётное —
у
2) Оба числа чётные; одно число больше
другого —
3) Сумма очков равна 4; произведение
очков равно 0
4) Произведение очков равно 0; сумма
очков равна 8 –​

Показать ответ
Ответ:
гулллллл
гулллллл
26.03.2023 14:15
Пример 1. Найти точку максимума функции y=(x-12)^2(x-3)+4

Решение:

1) Вычислим производную функции:
     y'=((x-12)^2(x-3)+4)'=((x-12)^2)'(x-3)+(x-12)^2(x-3)'=\\ \\ =2(x-12)(x-3)+(x-12)^2=(x-12)(2x-6+x-12)=\\ \\ =(x-12)(3x-18)
2) Приравниваем производную функции к нулю:
(x-12)(3x-18)=0
Произведение равно нулю, если один из множителей равен нулю
x-12=0\\ x_1=12\\ 3x-18=0\\ 3x=18\\ x_2=6

___+___(6)___-___(12)____+__
В точке х=6 производная функции меняется знак с (+) на (-), следовательно точка х=6 максимума.

ответ: х=6 - точка максимума

Пример 2. Найти точку минимума функции y=(x+8)^2(5x-32)+11

Решение:

1) Найдем производную данной функции
y'=((x+8)^2(5x-32)+11)'=((x+8)^2)'(5x-32)+(x+8)^2(5x-32)'=\\ \\ =2(x+8)(5x-32)+5(x+8)^2=(x+8)(10x-64+5x+40)=\\ \\ =(x+8)(15x-24)
2) Приравниваем производную функции к нулю
(x+8)(15x-24)=0
Произведение равно нулю, если один из множителей равен нулю
x+8=0\\ x_1=-8\\ \\ 15x-24=0|:3\\ 5x-8=0\\ \\ x=8/5=1.6

___+___(-8)___-__(1.6)__+___
В точке х=1,6 знак производная меняется с (-) на (+), следовательно, точка х = 1,6 - т. минимума

ответ: х=1.6 - точка минимума

Пример 3. Найти наименьшее значение функции y=3x-x \sqrt{x+9} на отрезке [1;7]

Решение:

1) Вычислим производную функции
y'=(3x-x \sqrt{x+9} )'=3-((x)'\sqrt{x+9}+x(\sqrt{x+9})')=\\ \\ =3-\sqrt{x+9}- \dfrac{x}{2\sqrt{x+9}}

2) Приравниваем производную функции к нулю
3-\sqrt{x+9}- \dfrac{x}{2\sqrt{x+9}} =0
Пусть \sqrt{x+9}=t, причем t \geq 0, иx=t^2-9 тогда получаем
3-t- \dfrac{t^2-9}{2t} =0\,\,\, \bigg|\cdot (2t\ne0)\\ \\ \\ 6t-2t^2-t^2+9=0\\ -3t^2+6t+9=0\\ \\ -3(t^2-2t-3)=0\\ t^2-2t-3=0
По т. Виета:
t_1=-1\\ t_2=3
Корень t=-1 не удовлетворяет условию при t≥0

Обратная замена
\sqrt{x+9}=3\\ x+9=9\\ x=0\notin [1;7]

3) Найдем наименьшее значение на концах отрезка
y(1)=3\cdot 1-1\cdot \sqrt{1+9} =3-\sqrt{10} \ \textless \ 0\\ y(7)=3\cdot7-7\cdot\sqrt{7+9} =21-7\cdot4=21-28=-7\,\,\,\,\,-\,\,\,\,\,\,\, \min

ответ: наименьшее значение y(7)=-7
0,0(0 оценок)
Ответ:
Kirill7692
Kirill7692
19.06.2021 10:19

Истоки алгебры уходят к временам глубокой древности. Арифметические действия над натуральными числами и дробями — простейшие алгебраические операции — встречаются в ранних математических текстах[3]. Ещё в 1650 году до н. э. египетские писцы могли решать отвлечённые уравнения первой степени и простейшие уравнения второй степени, к ним относятся задачи 26 и 33 из папируса Ринда и задача 6 из Московского папируса (так называемые задачи на «аха»). Предполагается, что решение задач было основано на правиле ложного положения[9]. Это же правило, правда, крайне редко, использовали вавилоняне[10].

Вавилонские математики умели решать квадратные уравнения. Они имели дело только с положительными коэффициентами и корнями уравнения, так как не знали отрицательных чисел. По разным реконструкциям в Вавилоне знали либо правило для квадрата суммы, либо правило для произведения суммы и разности, вместе с тем метод вычисления корня полностью соответствует современной формуле. Встречаются и уравнения третьей степени[11]. Кроме того, в Вавилоне была введена особая терминология, использовались шумерские клинописные знаки для обозначения первого неизвестного («длины»), второго неизвестного («ширины»), третьего неизвестного («глубины»), а также различных производных величин («поля» как произведения «длины» и «ширины», «объёма» как произведения «длины», «ширины» и «глубины»), которые можно считать математическими символами, так как в обычной речи уже использовался аккадский язык. Несмотря на явное геометрическое происхождение задач и терминов, использовались они отвлечённо, в частности, «площадь» и «длина» считались однородными[10]. Для решения квадратных уравнений было необходимо уметь осуществлять различные тождественные алгебраические преобразования, оперировать неизвестными величинами. Таким образом был выделен целый класс задач, для решения которых необходимо пользоваться алгебраическими приёмами[11].

После того как была открыта несоизмеримость стороны и диагонали квадрата, греческая математика переживала кризис, разрешению которого выбор геометрии как основы математики и определение алгебраических операций для геометрических величин. Геометрической алгебре посвящена вторая книга «Начал» Евклида, работы Архимеда и Аполлония. С использованием отрезков, прямоугольников и параллелепипедов были определены сложение и вычитание, произведение (построенный на двух отрезках прямоугольник). Такое представление позволило доказать дистрибутивный закон умножения относительно сложения, тождество для квадрата суммы. Алгебра первоначально была основана на планиметрии и при в первую очередь для решения квадратных уравнений[12]. Вместе с тем к алгебраическим уравнениям сводятся сформулированные пифагорейцами задачи об удвоении куба и трисекции угла, построение правильных многоугольников[13]. Решение кубических уравнений получило своё развитие в работах Архимеда (сочинения «О шаре и цилиндре» и «О коноидах и сфероидах»), который исследовал в общем виде уравнение {\displaystyle x^{3}+ax+b=0}x^{3}+ax+b=0. Отдельные задачи решались с конических сечений[14].

Неожиданный переход к алгебре, основанной на арифметике, произошёл в работах Диофанта, который ввёл буквенные обозначения: неизвестное число он назвал «число», вторую степень неизвестного — «квадрат», третью — «куб», четвёртую — «квадрато-квадрат», пятую — «квадрато-куб», шестую — «кубо-куб». Также он ввёл обозначения для отрицательных степеней, свободного члена, отрицательного числа (или вычитания) и знака равенства. Диофант знал и использовал правило переноса вычитаемого из одной части уравнения в другую и правило сокращения равных членов[15]. Исследуя уравнения третьей и четвёртой степеней, Диофант для нахождения рациональной точки на кривой использует такие методы геометрической алгебры, как провести касательную в рациональной точке кривой или провести прямую через две рациональные точки. В X веке «Арифметика» Диофанта, в которой он изложил свои методы, была переведена на арабский язык, а в XVI веке достигла Западной Европы, оказав влияние на работы Ферма и Виета. Идеи Диофанта можно заметить также в работах Эйлера, Якоби, Пуанкаре и других математиков вплоть до начала XX века. В настоящее время проблемы Диофанта принято относить к алгебраической геометрии[16].

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота