ответ: Одночленом - называется произведение чисел, переменных и их натуральных степеней.
Каждое из чисел 1, 7, 1 002, 0, −1, −7, 0,8, 1/4, - это одночлен. Любая переменная, к примеру, a, b, p, q, t, x, y, z – это тоже одночлены по определению. Одночленами являются и степени чисел и переменных, например, 23, (−3,41)7, x2 и t115. Но наиболее яркими представителями одночленов являются произведения чисел, переменных и их степеней: 5·x, 7·(−3)·x·y3·6, x·x·y3·x·y2·z и т.п. Из приведенных примеров видно, что в составе одночлена может быть как одно, так и несколько чисел, как одна, так и несколько переменных и их степеней, причем они могут повторяться.
Многочленом называется сумма одночленов.
Одночлены, входящие в состав многочлена, называют его членами.
Членами многочлена 4xy – 3ab являются 4xy и – 3ab .
Если многочлен состоит из двух членов, то его называют двучленом:
5xy – 7ab ; y+5b; 7a+13a.
Если из трех – трехчленом:
5x y – 7a +5 ; y+5b– 3x ; 7a+13a+5ab .
Одночлен считают многочленом, состоящим из одного члена:
Объяснение:
1) 2х² + 4ху + 2у²;=2(x²+2xy+y²)=2(x+y)²=2(x+y)(x+y)
2) 6х² - 12ху + 6у²=6(x²-2xy+y²)=6(x-y)²=6(x-y)(x-y)
3) 3а² – 6а + 3=3(a²-2a+1)=3(a-1)²=3(a-1)(a-1)
4) 2ху² + 4ху + 2х=2x(y²+2y+1)=2x(y+1)²=2x(y+1)(y+1)
2)(1,1х2 – 6у)²– (1,1х2 – 6у)(1,1х² + 6у)=1,21x^4-13,2x²y+36y²-(1,21x^4-36y²)=
=1,21x^4-13,2x²y+36y²-1,21x^4+36y²=72y²-13,2x²y
2) (2,3а – 7b³)(2,3а + 7b³) – (2,3а + 7b3)²= =5,29a²-49b^6-(5,29a²+32,2ab³+49b^6)=
5,29a²-49b^6-5,29a²-32,ab³-49b^6= -98b^6-32,2ab³
3) 1000 + a6 – (a² + 10)(a4 – 10a² + 100)=1000+a^6-(a^6+1000)=1000+a^6-a^6-1000=0
4) (1,1d – c³)(1,21 d² + 1,1c³d + c6) – 1,33 d³+ 2c9=(1,1d)³-(c^3)^3-1,33d^3+2x^9=
=1,331d³-c^9-1,33d³+2c^9=0,001d³+c^9
ответ: Одночленом - называется произведение чисел, переменных и их натуральных степеней.
Каждое из чисел 1, 7, 1 002, 0, −1, −7, 0,8, 1/4, - это одночлен. Любая переменная, к примеру, a, b, p, q, t, x, y, z – это тоже одночлены по определению. Одночленами являются и степени чисел и переменных, например, 23, (−3,41)7, x2 и t115. Но наиболее яркими представителями одночленов являются произведения чисел, переменных и их степеней: 5·x, 7·(−3)·x·y3·6, x·x·y3·x·y2·z и т.п. Из приведенных примеров видно, что в составе одночлена может быть как одно, так и несколько чисел, как одна, так и несколько переменных и их степеней, причем они могут повторяться.
Многочленом называется сумма одночленов.
Одночлены, входящие в состав многочлена, называют его членами.
Членами многочлена 4xy – 3ab являются 4xy и – 3ab .
Если многочлен состоит из двух членов, то его называют двучленом:
5xy – 7ab ; y+5b; 7a+13a.
Если из трех – трехчленом:
5x y – 7a +5 ; y+5b– 3x ; 7a+13a+5ab .
Одночлен считают многочленом, состоящим из одного члена:
2x ; 3 ; 0 ; 7xy.