Выберите правильный вариант ответа.
В прямоугольном треугольнике АFС угол между биссектрисой СК и высотой СН, проведёнными из вершины прямого угла С, равен 15°. Сторона АF = 48 см. Найдите сторону АС, если известно, что точка К лежит между F и Н.
24 см
48 см
28 см
34 см
График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны.
Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y
Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной.
-х²+4=0; х²=4 → х=√4
Корнями будут х₁=-2, х₂=2
Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2.
В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0.
Значение максимума у(0) равно -0²+4 = 4.
Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2.
В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)
График функции дан во вложении.
2014, 2015
2017, 2018,2019, 2020.
Рассмотрим произвольное число A в котором n цифр. Очевидно, что
Поскольку в числе 10^k ровно k+1 цифра, можно утверждать что:
В числе A^2 количество цифр от 2n-1 до 2n включительно
В числе A^3 количество цифр от 3n-2 до 3n включительно
Суммарное число цифр, таким образом, лежит в пределах
от 5n-3 до 5n включительно. То есть, остатки от деления суммарного числа цифр на 5 могут быть только 2,3,4 и 0
Подходят: 2014, 2015
2017, 2018,2019, 2020.
Объяснение:
Рассмотрим произвольное число A в котором n цифр. Очевидно, что
Поскольку в числе 10^k ровно k+1 цифра, можно утверждать что:
В числе A^2 количество цифр от 2n-1 до 2n включительно
В числе A^3 количество цифр от 3n-2 до 3n включительно
Суммарное число цифр, таким образом, лежит в пределах
от 5n-3 до 5n включительно. То есть, остатки от деления суммарного числа цифр на 5 могут быть только 2,3,4 и 0