Пусть второй рабочий в час делает х деталей, тогда первый рабочий в час делает х+3 детали Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов, тогда второй рабочий на производство 150 деталей затрачивает 150/х часов Составим уравнение: 150/х-112/(х+3)=2 150/х-112/(х+3)-2=0 Общий знаменатель х(х+3), тогда (150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение: 150х+450 -112х-2х²-6х=0 32х-2х²+450=0 (умножим на -1) 2х²-32х-450=0 (сократим на 2) х²-16х-225=0 Найдем дискриминант: D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156 х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25 х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит ответ: Второй рабочий в час изготовляет 25 деталей.
Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов,
тогда второй рабочий на производство 150 деталей затрачивает 150/х часов
Составим уравнение:
150/х-112/(х+3)=2
150/х-112/(х+3)-2=0
Общий знаменатель х(х+3), тогда
(150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение:
150х+450 -112х-2х²-6х=0
32х-2х²+450=0 (умножим на -1)
2х²-32х-450=0 (сократим на 2)
х²-16х-225=0
Найдем дискриминант:
D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156
х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25
х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит
ответ: Второй рабочий в час изготовляет 25 деталей.
ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок