Выберите верные утверждения чисел бесконечное множество
2)Составных чисел конечное число
3)Если n1, n2...na-последовательные числа, то число Если числа, то число N= (n1, n2...na)^2+1-не делится ни на одно из чисел n1, n2...na
5) Если n1, n2...na-последовательные числа, то число Если a1...an-составные числа, то число а1...аn+1-составное
Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Иррациональные числа
ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π
Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.
О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].
К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.
Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].
(РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО)
Два раза орёл и один раз решка выпадает в трёх случаях (ООР) (ОРО) (РОО).
Вероятность равна 3/8.
1б) Если монету бросают дважды, то возможны случаи
(ОО) (ОР) (РО) (РР)
Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4.
2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 .
Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3
б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна
2/6*3/6=6/36=1/6