Постройте график функции у = 5 - 2х. Пользуясь графиком, найдите значения аргумента, при которых функция принимает отрицательные значения: 1) x > 5 2) x < -5 3) x > 2,5 4) x < 2,5 5) x < 0
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).
Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.
Решаем сначала уравнение вида (х^2-9)*(х-6)=0 (x-3)(x+3)(x-6)=0 корни уравнения: x=3, x=-3, x=6 рисуем прямую х и отмечаем эти точки на ней - + - + _____.______.________.___ -3 3 6 и считаешь знаки в каждом промежутке. Для этого подставляем любую точку с этого промежутка в исходное неравенство если x∈(-∞;-3) знак "-" (-4²-9)(-4-6)<0 если x∈(-3;3) знак "+" (2²-9)(2-6)>0 если x∈(3;6) знак "-" (4²-9)(4-6)<0 если x∈(6;+∞) знак "+" (7²-9)(7-6)>0
нам нужны значения, когда неравенство меньше 0, следовательно x∈(-∞;-3) ∪(3;6)
y = f(x)
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.(x-3)(x+3)(x-6)=0
корни уравнения: x=3, x=-3, x=6
рисуем прямую х и отмечаем эти точки на ней
- + - +
_____.______.________.___
-3 3 6
и считаешь знаки в каждом промежутке. Для этого подставляем любую точку с этого промежутка в исходное неравенство
если x∈(-∞;-3) знак "-" (-4²-9)(-4-6)<0
если x∈(-3;3) знак "+" (2²-9)(2-6)>0
если x∈(3;6) знак "-" (4²-9)(4-6)<0
если x∈(6;+∞) знак "+" (7²-9)(7-6)>0
нам нужны значения, когда неравенство меньше 0, следовательно x∈(-∞;-3) ∪(3;6)
Решение следующей задачи в приложении