Первый поезд проехал весь путь : S= Vt Тогда второй поезд: S= 0.75V (t + 2.25) т.к. 2 ч. 15 мин = 2 15/60 ч. = 2,25 ч. 100% - 25% = 75% = 75/100=0,75 Расстояние, которое поезда одинаковое.⇒ Vt = 0.75V(t+2.25) Vt = 0.75Vt + 1.6875V Vt - 0.75 Vt = 1.6875V 0.25Vt = 1.6875V t= 1.6875V / 0.25V t= 6.75 часа - время в пути первого поезда 6.75 +2.25 = 9 часов - время в пути второго второго поезда 7 ч. 00 мин. + 9 ч. = 16 ч. 00 мин. - второй поезд прибыл в Краснодар.
ответ: в 16 часов второй поезд прибыл в Краснодар.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
S= Vt
Тогда второй поезд:
S= 0.75V (t + 2.25)
т.к. 2 ч. 15 мин = 2 15/60 ч. = 2,25 ч.
100% - 25% = 75% = 75/100=0,75
Расстояние, которое поезда одинаковое.⇒
Vt = 0.75V(t+2.25)
Vt = 0.75Vt + 1.6875V
Vt - 0.75 Vt = 1.6875V
0.25Vt = 1.6875V
t= 1.6875V / 0.25V
t= 6.75 часа - время в пути первого поезда
6.75 +2.25 = 9 часов - время в пути второго второго поезда
7 ч. 00 мин. + 9 ч. = 16 ч. 00 мин. - второй поезд прибыл в Краснодар.
ответ: в 16 часов второй поезд прибыл в Краснодар.