вычеслите дискриминат квадратного уравнения и укажите число его корней 3x2+9x+7 равно 0 2x2+x+2 равно 0 4x2-4x+1 равно 0 9x2+6x+1 равно ноль x2+5x-6 равно 0 3x2-9-7 равно ноль
A =9x =4y +2 ; Число a должна иметь вид : a =36k +18 .
Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k ≤ 27. Количество таких чисел: n=27-(3-1) = 25 . a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * * * ! 702 = 126 +(n-1)36⇒n=17 * * * 702 =36k+18 при k =19.
* * * P.S. * * * a = 9x = 4y +2 ; || 100 <9x <1000⇔12 <x ≤111 || y =(9x -2)/4 ; y = 2x + (x-2)/4 ; k= (x-2)/4⇒x=4k+2 . || y =2x+k =2(4k+2)+k =9k+4 || ⇒ { x =4k +2 . y =9k+4 . || 12 ≤ 4k+2 ≤ 111⇔2,5 ≤ k ≤27,25 ; 3 ≤ k ≤ 27 || a =9x =36k+18.
Число a должна иметь вид : a =36k +18 .
Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k ≤ 27.
Количество таких чисел: n=27-(3-1) = 25 .
a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * *
* ! 702 = 126 +(n-1)36⇒n=17 * * *
702 =36k+18 при k =19.
* * * P.S. * * *
a = 9x = 4y +2 ; || 100 <9x <1000⇔12 <x ≤111 ||
y =(9x -2)/4 ;
y = 2x + (x-2)/4 ; k= (x-2)/4⇒x=4k+2 . || y =2x+k =2(4k+2)+k =9k+4 ||
⇒ { x =4k +2 . y =9k+4 .
|| 12 ≤ 4k+2 ≤ 111⇔2,5 ≤ k ≤27,25 ; 3 ≤ k ≤ 27 ||
a =9x =36k+18.
число a =9x =9(4k +2) =36k +18.
Тогда:
а+1 - второе число,
а+2 - третье число,
а+3 - третье число.
а и а+1 - два меньших числа.
а+2 и а+3 - два больших числа.
а(а+1) - произведение меньших чисел.
(а+2)(а+3) - произведение больших чисел.
Уравнение:
(а+3)(а+2) - а(а+1) = 74
а^2 + 3а + 2а + 6 - а^2 - а = 74
5а + 6 - а = 74
4а = 74 - 6
4а = 68
а = 68 : 4
а = 17 - первое из натуральных чисел.
а+1 = 17+1 = 18 - второе число.
а+2 = 17+2 = 19 - третье число.
а+3 = 17+3 = 20 - четвертое число.
ответ: 17, 18, 19, 20