Решение на фото: Алгоритм нахождения экстремумов: функции(наибольшее и наименьшее значение функции) •Находим производную функции Приравниваем эту производную к нулю Находим значения переменной получившегося выражения (значения переменной, при которых производная преобразуется в ноль) Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую), все эти точки называются точками «подозрительными» на экстремум Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в производную.
Алгоритм нахождения экстремумов:
функции(наибольшее и наименьшее значение функции)
•Находим производную функции
Приравниваем эту производную к нулю
Находим значения переменной получившегося выражения (значения переменной, при которых производная преобразуется в ноль)
Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую), все эти точки называются точками «подозрительными» на экстремум
Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в производную.
Строим угол C, равный данному углу Е. Для этого
строим луч СН;
проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.;
D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН;
проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L.
Проводим луч CL. Угол LCK равен данному углу Е.
На луче СН откладываем отрезок СА = b.
На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Треугольник АВС - искомый.