Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Maksim777900
13.08.2022 17:33 •
Алгебра
Вычисли наименьшее значение линейной функции y=2x+4 на отрезке [−2;3], не выполняя построения.
Показать ответ
Ответ:
Sonyamay
30.04.2020 02:51
1. log_0,5(x^2 +x) = -1
log_0,5(x^2 +x) = log_0,5 (2)
x^2 +x=2
x^2 +x - 2=0
По сумме коэффициентов:
x1=1 x2=c/a=-2
ОДЗ: x^2 +x>0 x(x+1)>0 x>0 x>-1
-2 не удовл. усл.
ответ: 1
2. 2log_3 (x)=log_3 (2x^2 -x)
log_3 (x^2) = log_3 (2x^2 - x)
x^2= 2x^2 -x
x^2-2x^2 +x=0
-x^2 +x=0
x(x-1)=0
x1=0
x-1=0
x=1
ОДЗ: x>3; 2x^2 -x>0 x(2x -1)>0 x>0 2x>1 x>1/2
0 и 1 не удовл. усл.
ответ: Решений нет
3. log_1/2 (x)= log_1/2 (x+3) - log_1/2 (x+1)
log_1/2 (x)= log_1/2 ((x+3)/(x+1))
x=(x+3)/(x+1)
x(x+1)/(x+1) = (x+3)/(x+1)
(x^2 +x - x -3)/(x+1) = 0
x^2 -3 = 0
x^2=3
x= +- корень из 3
x+1 (зачеркнутое равно) 0
x (зачеркнутое равно) -1
ОДЗ: x>0; x+3>0 x>-3; x+1>0 x>-1
- корень из 3 - не удовл. усл.
ответ: корень из 3
0,0
(0 оценок)
Ответ:
Okean111
30.06.2022 00:50
1)
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .
0,0
(0 оценок)
Популярные вопросы: Алгебра
igor1337d
19.03.2023 15:24
Ландыш екапрль. счвпрддбьмчв...
Zmei0907
29.08.2022 01:22
Укажи пару чисел, являющуюся решением уравнения 2x−y=12 (0;12) (2;0) (−1;12) (1;2) (0;−12)...
сехун2
19.10.2021 15:54
Очень нужно, ответ: (-∞; -1)U(-1; -0,6]U(1; +∞)...
pra02
08.05.2020 02:42
Дана функция y=-0,5x-1. график функции пересекает ось ох в точке с абсциссой m, а ось оу в точке с ординатой n. найдите сумму чисел m и n. решить ,...
bodik228
08.05.2020 02:42
Добрый день! : ) объясните тему по : множества )...
nina19862
08.05.2020 02:42
Решить уравнение sqrt(2x-4)- sqrt(x+5)=1...
mashyanova
08.05.2020 02:42
3-у+2*(5-у)=4у-8 решите , желательно с объяснением. главное решить вообще...
lizon392
08.05.2020 02:42
Расставить знаки между четырьмя четверками так, чтобы получилось четыре. 4444=4...
annamajoriva953
27.08.2022 22:04
Докажите что значения выражения:41^3+19^3 делится на 60 Заранее...
крист34
11.04.2023 06:13
ЭТО ПРЯМ ОЧЕНЬ фото прикрепила ниже...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
log_0,5(x^2 +x) = log_0,5 (2)
x^2 +x=2
x^2 +x - 2=0
По сумме коэффициентов:
x1=1 x2=c/a=-2
ОДЗ: x^2 +x>0 x(x+1)>0 x>0 x>-1
-2 не удовл. усл.
ответ: 1
2. 2log_3 (x)=log_3 (2x^2 -x)
log_3 (x^2) = log_3 (2x^2 - x)
x^2= 2x^2 -x
x^2-2x^2 +x=0
-x^2 +x=0
x(x-1)=0
x1=0
x-1=0
x=1
ОДЗ: x>3; 2x^2 -x>0 x(2x -1)>0 x>0 2x>1 x>1/2
0 и 1 не удовл. усл.
ответ: Решений нет
3. log_1/2 (x)= log_1/2 (x+3) - log_1/2 (x+1)
log_1/2 (x)= log_1/2 ((x+3)/(x+1))
x=(x+3)/(x+1)
x(x+1)/(x+1) = (x+3)/(x+1)
(x^2 +x - x -3)/(x+1) = 0
x^2 -3 = 0
x^2=3
x= +- корень из 3
x+1 (зачеркнутое равно) 0
x (зачеркнутое равно) -1
ОДЗ: x>0; x+3>0 x>-3; x+1>0 x>-1
- корень из 3 - не удовл. усл.
ответ: корень из 3
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .