Вычисли силу тяжести по формуле G=γm планеты m/r2, если масса тела 1 кг, r (расстояние между центрами масс, х 10^6 метр) равно 60,100; m планеты (масса планеты, х 10^24 кг) равна 561,80376. Гравитационная постоянная 6,67⋅10^−11 м³/(кг·сек²).
(ответ округли до сотых. При получении результата 9,898 после округления будет 9,9.)
МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22
ответ: 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
Объяснение:
Запишем данный многочлен в виде 2*(x³+5/2*x²+1/2*x-1). Для того, чтобы разложить многочлен в скобках на множители, нужно решить уравнение x³+5/2*x²+1/2*x-1=0. Это - приведённое кубическое уравнение, поэтому одним из его целых корней (если они есть) может быть целый делитель свободного члена данного уравнения, то есть числа -1. Таких делителей всего два: 1 и -1. Подставляя значения x=1 и x=-1 в данное уравнение, находим, что число x=1 не является корнем уравнения, а число x=-1 - является. Теперь разделим многочлен x³+5/2*x²+1/2*x-1 на двучлен x-(-1)=x+1. После этого получим тождество x³+5/2*x²+1/2*x-1=(x+1)*(x²+3/2*x-1). Теперь разложим на множители квадратный трёхчлен x²+3/2*x-1, для чего нужно решить уравнение x²+3/2*x-1=0. Оно имеет корни x1=1/2 и x2=-2, поэтому x²+3/2*x-1=0=(x-1/2)*(x+2). Тогда x³+5/2*x²+1/2*x-1=(x+1)*(x-1/2)*(x+2) и окончательно 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).