Вычисли, сколько корней имеет уравнение x3+3x2−144x−a=0 при различных значениях параметра a.
ответ (при необходимости бесконечность записывай как Б с соответствующим знаком):
уравнение имеет один корень, если a∈ (
;
)∪(
;
).
Уравнение имеет два корня, если (записывай с меньшего значения) a=
и a=
.
Уравнение имеет три корня, если a∈ (
;
).
Левая часть - четная функция. Делаем замену x²=t. Производная левой части как функции от t равна 3(t-2√3)²≥0, т.е. неотрицательна при всех t, а значит, функция возрастает. Т.к. x² при х>0 тоже возрастает, то на положительной полуоси возрастает и исходная функция. Проверяем, что f(1)=37-30√3<0 и f(2)=4(16+36)-6√3(16+4)>0. Значит целые решения в силу четности -1, 0, 1.
Для каждого задания нужно записать уравнение и решить его.
1) 3t + 5 = 5t + 13, 2) 3t + 17 = 2 · (5t - 5),
3t - 5t = 13 - 5, 3t + 17 = 10t - 10,
-2t = 8, 3t - 10t = - 10 - 17,
t = 8 : (-2) , -7t = -27,
t = -4 ; t = -27 : (-7),
t = 27/7 = 3 целых 6/7;
3) 3 · (3t - 11) = 5t - 17 , 4) (11 - 13t) - 7 = 8t + 11,
9t - 33 = 5t - 17, 4 - 13t = 8t + 11,
9t - 5t = -17 + 33 , -13t - 8t = 11 - 4,
4t = 16, -21t = 7,
t = 16 : 4, t = 7 : (-21),
t = 4 ; t = -1/3 ;
5) (0,5t + 3,1) + 8 = 0,5t - 4,9, 6) (81 - 8,3t) - (75 - 8,3t) = 3,
0,5t + 11,1 = 0,5t - 4,9, 81 - 8,3t - 75 + 8,3t = 3,
0,5t - 0,5t = - 4,9 - 11,1, 0t + 6 = 3,
0t = -16, 0t = 3 - 6,
нет решений; 0t = -3,
нет решений.