Вычисли среднее квадратичное отклонение величины X, заданной частотным распределением:
X
2
3
4
5
M
3
1
4
5
2.Составь таблицу распределения по вероятностям P значений случайной величины X — числа очков, появившихся при броске игрального кубика, на гранях которого отмечены: на 1 — 11 очков, на 2 — 12 очков, на 3 — 13 очков.
30/(v1+v2)=1,2
30/(v1-v2)=1,4
v1+v2=30/1,2=25
v1-v2=30/1,4=300/14=150/7
Сложив эти два уравнения и заменив получившимся уравнением первое уравнение системы, получим:
2*v1=325/7
v1-v2=150/7
Из первого уравнения находим v1=325/(2*7)=325/14 км/ч. Подставляя это выражение во второе уравнение, получаем:
325/14-v2=150/7=300/14, v2=325/14-300/14=25/14 км/ч.
ответ: скорость реки равна 25/14 км/ч, скорость лодки равна 325/14 км/ч.
Число a должна иметь вид : a =36k +18 .
Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k ≤ 27.
Количество таких чисел: n=27-(3-1) = 25 .
a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * *
* ! 702 = 126 +(n-1)36⇒n=17 * * *
702 =36k+18 при k =19.
* * * P.S. * * *
a = 9x = 4y +2 ; || 100 <9x <1000⇔12 <x ≤111 ||
y =(9x -2)/4 ;
y = 2x + (x-2)/4 ; k= (x-2)/4⇒x=4k+2 . || y =2x+k =2(4k+2)+k =9k+4 ||
⇒ { x =4k +2 . y =9k+4 .
|| 12 ≤ 4k+2 ≤ 111⇔2,5 ≤ k ≤27,25 ; 3 ≤ k ≤ 27 ||
a =9x =36k+18.
число a =9x =9(4k +2) =36k +18.