Наибольшое из возможных - квадрат наибольшего числа в соответствии с условием, что сумма равна 82. Тогда эти числа 41 и 41, при этом их произведение равно 1681
Пусть большее число равно х, тогда меньшее по условию равно х - 20. Их произведение равно y = x(x - 20) = x^2 - 20x. Для нахождения наименьшего возможного у берем производную от у и приравниваем нулю: y' = 2x - 20 = 0. Отсюда х = 10. Нетрудно проверить, что в этой точке у имеет минимум. Второе из чисел равно 10 - 20 = -10.
x и y y=1-x z=x(1-x) Находим критическую точку: z'=1-x-x=1-2x z'=0-> x=0,5 Проверяем какой экстремум: x<0,5->z'>0-возрастает x>0,5->z'<0-убывает, следовательно это максимум ответ:x= 0,5 и y= 0,5->xy=0,25
|(5х-2(у+4)=0
|(6(2х+3)-у=41
Раскроем скобки:
|5х-2у-8 =0
|12х- у+18=41
Из первого уравнения выразим у через х
5х-2у-8 =0
2у=5х-8
у=(5х-8):2
Подставим это значение во второе уравнение
12х- (5х-8):2+18=41
Умножим обе части на 2
24х-5х+8+36=82
19х=82-44
19х=38
х=2
у=(5*2-8):2
у=1
Эта же система уравнений решается и методом сложения:
|(5х-2(у+4)=0
|(6(2х+3)-у=41
Раскрываем скобки
|5х-2у-8 =0
|12х- у+18=41
Умножим второе уравнение на -2
|5х-2у-8 =0
|-24х+2у-36=-82
Сложим уравнения и получим:
-19х-44=-82
-19х=-38
х=2
5*2-2у-8 =0
10-2у-8=0
2у=2
у=1
Пусть большее число равно х, тогда меньшее по условию равно х - 20. Их произведение равно y = x(x - 20) = x^2 - 20x. Для нахождения наименьшего возможного у берем производную от у и приравниваем нулю: y' = 2x - 20 = 0. Отсюда х = 10. Нетрудно проверить, что в этой точке у имеет минимум. Второе из чисел равно 10 - 20 = -10.
x и y
y=1-x
z=x(1-x)
Находим критическую точку:
z'=1-x-x=1-2x
z'=0-> x=0,5
Проверяем какой экстремум:
x<0,5->z'>0-возрастает
x>0,5->z'<0-убывает, следовательно это максимум
ответ:x= 0,5 и y= 0,5->xy=0,25