2.17 (3 твоя задача) решается по такому же алгоритму, как и 2.13 (1 задача). Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10) Тогда 10 х = 4,(4) Далее от 1-го выражения (пусть) отнимаем второе (тогда). 10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период) 9 х = 4 х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10)
Тогда 10 х = 4,(4)
Далее от 1-го выражения (пусть) отнимаем второе (тогда).
10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период)
9 х = 4
х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
х=2⁴=16
2) log₀.₂(x-4) = -2; 0,2=1/5
log₁/₅(x-4) = -2
(x-4) = (1/5)⁻²
х-4=25
х=29
3) log₅(x+1) – log₅(1-x) = log₂(2x+3) ОДЗ х> -1 ; х<1 ; х >-1,5 x∈(-1;1)
log₅(x+1) /(1-x) = log₂(2x+3)
log₅(2x+3)
log₅(x+1) /(1-x) = l
log₅ 2
ОДЗ х>0
1) log₃x > 2
x> 3²
x>9
x∈(9;+∞)
2) log₈x ≤ 1
х≤8¹
х∈(0 ;8]
3) log₀.₂x ≥ -2 0,2<1 ⇒ при решении меняем знак
log ₁/₅x ≥ -2
х≤ (1/5)⁻²
х≤ 25
х∈(0;25]