Если изобразить эти сосны на графике - четырехугольник: сторона 14м перпендикулярна основанию (24м - расстояние между соснами), и вторая сторона 7м тоже перпендикулярна онованию.
Опускаем высоту из точки-макушки сосны 7 метров на первую сторону четырехугольника, она равна 24м (2 параллельные прямые, углы равны).
Теперь наш четырехугольник выглядит следующим образом: в основании прямогульный четырехугольник со сторонами 7м и 24м. А на нем лежит прямоугольный треугольник с катетами 24м и (14-7)м (т.е. 7м). Гипотенуза этого треугольника - искомое расстояние между макушками. Квадрат гипотенузы равен сумме квадратов катетов = 7^2+24^2 = 625
Так как log4(x)=log2(x)/log2(4)=1/2*log2(x), а 1/2*log2(x)=log2(√x), то данное уравнение можно записать в виде: log2(x-2)=log2(√x). Оно приводится к уравнению x-2=√x (*), но так как выражения x-2 и √x находятся под знаком логарифма, то к этому уравнению добавляются условия:
x-2>0
√x>0
Решая эту систему неравенств, находим √x>√2 (**) и переходим к решению уравнения (*). Возводя обе его части в квадрат и приводя подобные члены, приходим к квадратному уравнению x²-5*x+4=0, которое имеет решения x1=4, x2=1. С учётом условия (**) окончательно находим x=4.
Если изобразить эти сосны на графике - четырехугольник: сторона 14м перпендикулярна основанию (24м - расстояние между соснами), и вторая сторона 7м тоже перпендикулярна онованию.
Опускаем высоту из точки-макушки сосны 7 метров на первую сторону четырехугольника, она равна 24м (2 параллельные прямые, углы равны).
Теперь наш четырехугольник выглядит следующим образом: в основании прямогульный четырехугольник со сторонами 7м и 24м. А на нем лежит прямоугольный треугольник с катетами 24м и (14-7)м (т.е. 7м). Гипотенуза этого треугольника - искомое расстояние между макушками. Квадрат гипотенузы равен сумме квадратов катетов = 7^2+24^2 = 625
Гипотенуза = 25м
ответ: x=4.
Объяснение:
Так как log4(x)=log2(x)/log2(4)=1/2*log2(x), а 1/2*log2(x)=log2(√x), то данное уравнение можно записать в виде: log2(x-2)=log2(√x). Оно приводится к уравнению x-2=√x (*), но так как выражения x-2 и √x находятся под знаком логарифма, то к этому уравнению добавляются условия:
x-2>0
√x>0
Решая эту систему неравенств, находим √x>√2 (**) и переходим к решению уравнения (*). Возводя обе его части в квадрат и приводя подобные члены, приходим к квадратному уравнению x²-5*x+4=0, которое имеет решения x1=4, x2=1. С учётом условия (**) окончательно находим x=4.