Квадратный трехчлен может иметь два корня (и тогда график -- парабола -- пересекает ось ОХ в двух точках) эта ситуация однозначно определяется условием D > 0, квадратный трехчлен может не иметь корней (и тогда график -- парабола -- не пересекает ось ОХ) это соответствует условию D < 0, квадратный трехчлен может иметь один корень (мне больше нравится говорить, что это два корня, но они равны... x₁ = x₂) (и тогда вершина параболы лежит на оси ОХ) это соответствует условию D = 0... D = b² - 4ac = 2² - 4*4*(-m) = 4+16m 4+16m = 0 1+4m = 0 m = -1/4 m = -0.25
Перенесем все на координатную плоскость. Пусть точка Н = (0,0), точка А лежит на оси Оу. На скрине А(0,7), В(0,4), а рассматривать мы будем любые А(0, а) и В(0,b).
Получается, одна прямая проходит точку А и точку (-k, 0) а другая - B и (k,0), при чем мы рассматриваем всевозможные k. Здесь k - расстояние от точки Н до точки С и D.
Кстати говоря, условие, что точка В должна быть между А и Н необязательно, можно взять и точку А между В и Н, на решение это не влияет в силу симметриии, главное, что бы обе точки лежали на перпендикуляре (то есть на оси Оу).
Запишем уравнение прямых.
Так как нас интересует пересечение - приравниваем:
Поскольку пересечение двух прямых точно лежит на каждой из них, нужно подставить полученный икс в уравнение любой из прямых, результат будет одинаков.
Получилось, что для любого k, то есть для любого расстояния между точкой H до С и D, мы находим зависимый от k икс, и независимый от k игрек. То есть как бы мы не раздвигали точки C и D, игрек будет всегда один и тот же, зависящий только от точек А и В, на которые мы "привязываем" прямые AD и BC.
(и тогда график -- парабола -- пересекает ось ОХ в двух точках)
эта ситуация однозначно определяется условием D > 0,
квадратный трехчлен может не иметь корней
(и тогда график -- парабола -- не пересекает ось ОХ)
это соответствует условию D < 0,
квадратный трехчлен может иметь один корень
(мне больше нравится говорить, что это два корня,
но они равны... x₁ = x₂)
(и тогда вершина параболы лежит на оси ОХ)
это соответствует условию D = 0...
D = b² - 4ac = 2² - 4*4*(-m) = 4+16m
4+16m = 0
1+4m = 0
m = -1/4
m = -0.25
Перенесем все на координатную плоскость. Пусть точка Н = (0,0), точка А лежит на оси Оу. На скрине А(0,7), В(0,4), а рассматривать мы будем любые А(0, а) и В(0,b).
Получается, одна прямая проходит точку А и точку (-k, 0) а другая - B и (k,0), при чем мы рассматриваем всевозможные k. Здесь k - расстояние от точки Н до точки С и D.
Кстати говоря, условие, что точка В должна быть между А и Н необязательно, можно взять и точку А между В и Н, на решение это не влияет в силу симметриии, главное, что бы обе точки лежали на перпендикуляре (то есть на оси Оу).
Запишем уравнение прямых.
Так как нас интересует пересечение - приравниваем:
Поскольку пересечение двух прямых точно лежит на каждой из них, нужно подставить полученный икс в уравнение любой из прямых, результат будет одинаков.
Получилось, что для любого k, то есть для любого расстояния между точкой H до С и D, мы находим зависимый от k икс, и независимый от k игрек. То есть как бы мы не раздвигали точки C и D, игрек будет всегда один и тот же, зависящий только от точек А и В, на которые мы "привязываем" прямые AD и BC.
Итого, ответ - прямая