Длина спуска и подъёма одинакова и равна S км. Тогда длина всей дороги со спуском и подъёмом равна 2S км . Длина ровной дороги в 1,5 раза длиннее, чем 2S, то есть равна 1,5·2S=3S км . Скорость девочки по ровной дороге равна V₁=х км/час. Тогда время, затраченное на прохождение ровной дороги равно t₁=3S/x =3·(S/x)(час). Скорость девочки на спуске в 2 раза больше, чем по ровной дороге, то есть равна V₂=2x (км/час). Время, за которое девочка спустится, равно t₂=S/V₂=S/2x (час) . Скорость девочки на подъёме в 1,5 раза меньше, чем по ровной дороге, то есть равна V₃=x/1,5=2x/3 (км/час) . Время, за которое девочка совершит подъём, равно t₃=S/V₃=S/(2x/3)=3S/2x=3·(S/2x) (час) Время спуска и подъёма равно t₂+t₃=S/2x+3(S/2x)=4(S/2x)=2(S/x) (час) Сравним это с t₁=3(S/x) . Время, затраченное на прохождение ровной дороги, больше в t₁/(t₂+t₃)=3/2=1,5 раза. Время ,затраченное на прохождение дороги со спуском и подъёмом, меньше в (t₂+t₃)/t₁=2/3 раза.
5[x]+27{x}=2012 Т. к. 5[x] – целое число и отнимая его от 2012 должны получить тоже целое число 27{x}. Отнимая от 2012 целое число 27{x} мы должны получить число, которое делится на 5, т. е. кратное 5 ( 5[x] = 2012 - 27{x} ). При положительных целых значениях 27{x} такое невозможно. Следовательно, решение должно быть дробным. Подбираем: 1) 2012 – 27х 2/27 =2010; 2) 2012 – 27х 7/27 = 2005; 3) 2012 – 27х 12/27 = 2000; 4) 2012 – 27х 17/27 = 1995; 5) 2012 – 27х 22/27 = 1990. Других решений не может быть, следовательно, число корней уравнения равно 5.
Длина ровной дороги в 1,5 раза длиннее, чем 2S, то есть равна
1,5·2S=3S км .
Скорость девочки по ровной дороге равна V₁=х км/час.
Тогда время, затраченное на прохождение ровной дороги равно
t₁=3S/x =3·(S/x)(час).
Скорость девочки на спуске в 2 раза больше, чем по ровной дороге, то есть равна V₂=2x (км/час).
Время, за которое девочка спустится, равно t₂=S/V₂=S/2x (час) .
Скорость девочки на подъёме в 1,5 раза меньше, чем по ровной дороге, то есть равна V₃=x/1,5=2x/3 (км/час) .
Время, за которое девочка совершит подъём, равно
t₃=S/V₃=S/(2x/3)=3S/2x=3·(S/2x) (час)
Время спуска и подъёма равно
t₂+t₃=S/2x+3(S/2x)=4(S/2x)=2(S/x) (час)
Сравним это с t₁=3(S/x) .
Время, затраченное на прохождение ровной дороги,
больше в t₁/(t₂+t₃)=3/2=1,5 раза.
Время ,затраченное на прохождение дороги со спуском и подъёмом,
меньше в (t₂+t₃)/t₁=2/3 раза.
5[x]+27{x}=2012
Комментарии Отметить нарушениеТ. к. 5[x] – целое число и отнимая его от 2012 должны получить тоже целое число 27{x}.
Отнимая от 2012 целое число 27{x} мы должны получить число, которое делится на 5, т. е. кратное 5 ( 5[x] = 2012 - 27{x} ).
При положительных целых значениях 27{x} такое невозможно. Следовательно, решение должно быть дробным.
Подбираем:
1) 2012 – 27х 2/27 =2010;
2) 2012 – 27х 7/27 = 2005;
3) 2012 – 27х 12/27 = 2000;
4) 2012 – 27х 17/27 = 1995;
5) 2012 – 27х 22/27 = 1990.
Других решений не может быть, следовательно, число корней уравнения равно 5.