1) y³ - 2y² = y - 2 y³ - 2y² - y + 2 = 0 Разложим на множители и решим: ( y - 2)(y - 1)(y + 1) = 0 Произведение равно 0,когда один из множителей равен 0,значит, y - 2 = 0 y = 2 y - 1 = 0 y = 1 y + 1 = 0 y = -1 ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0 x⁴ - 14x² + 49 - 4x² - 17 = 0 x⁴ - 18x² + 32 = 0 Разложим на множители и решим: (x² - 16)(x² - 2) = 0 Произведение равно 0,когда один из множителей равен 0,значит, x² - 16 = 0 x² = 16 x = 4 x = - 4 x² - 2 = 0 x² = 2 x = +/- √2
б)вершина параболы находиться ПО формуле х0=-b/2a=>-2/2•-1=1
в)а=-1;b=2. формула х=-b/2a=>-2/2•(-1)=1
г)у=-х²+2х+8
1)точки пересечения с осью координат найдем из условий х=0 =>у(0)=0+2•0+8=0 И точка (0;6)
2) пересечение с осью абсцисс-это у=0
-х²+2х+8=0 =>так как квадратное решим с дискрименантами D=b²-4ac=2²-4•-1•8=36=6² из этого найдем х1и х2=>х1=-b+√D/2a=-2+6/2•-1=-2 ; x2=-b-√D/2a=-2-6/2•-1=4. (-2;4)
y³ - 2y² - y + 2 = 0
Разложим на множители и решим:
( y - 2)(y - 1)(y + 1) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
y - 2 = 0
y = 2
y - 1 = 0
y = 1
y + 1 = 0
y = -1
ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0
x⁴ - 14x² + 49 - 4x² - 17 = 0
x⁴ - 18x² + 32 = 0
Разложим на множители и решим:
(x² - 16)(x² - 2) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x² - 16 = 0
x² = 16
x = 4
x = - 4
x² - 2 = 0
x² = 2
x = +/- √2
ответ: x = 4, x = - 4, x = √2, x = - √2.
а)ветви направлены в вниз так как а=-1. ;а<0
б)вершина параболы находиться ПО формуле х0=-b/2a=>-2/2•-1=1
в)а=-1;b=2. формула х=-b/2a=>-2/2•(-1)=1
г)у=-х²+2х+8
1)точки пересечения с осью координат найдем из условий х=0 =>у(0)=0+2•0+8=0 И точка (0;6)
2) пересечение с осью абсцисс-это у=0
-х²+2х+8=0 =>так как квадратное решим с дискрименантами D=b²-4ac=2²-4•-1•8=36=6² из этого найдем х1и х2=>х1=-b+√D/2a=-2+6/2•-1=-2 ; x2=-b-√D/2a=-2-6/2•-1=4. (-2;4)
e)-х²+2х+8≠0
х≠-2 ;х≠4. D(y)=(-∞;-2)u(-2;4)u(4;+∞)
ж)E(f)={11;+∞)