\2)\; \; \int \frac{dx}{x(x-1)}=\int \Big (-\frac{1}{x}+\frac{1}{x-1}\Big )\, dx=-ln|x|+ln|x-1|+C=ln\Big |\frac{x-1}{x}\Big |+C\; ;" alt="3)\; \; \int (x-5)e^{x}\, dx=[\; u=x-5\; ,\; du=dx\; ,\; dv=e^{x}\; ,\; v=e^{x}\; ]=\\\\=(x-5)e^{x}-\int e^{x}\, dx=(x-5)e^{x}-e^{x}+C=e^{x}\, (x-6)+C\; ." />\2)\; \; \int \frac{dx}{x(x-1)}=\int \Big (-\frac{1}{x}+\frac{1}{x-1}\Big )\, dx=-ln|x|+ln|x-1|+C=ln\Big |\frac{x-1}{x}\Big |+C\; ;" />
\2)\; \; \int \frac{dx}{x(x-1)}=\int \Big (-\frac{1}{x}+\frac{1}{x-1}\Big )\, dx=-ln|x|+ln|x-1|+C=ln\Big |\frac{x-1}{x}\Big |+C\; ;" alt="3)\; \; \int (x-5)e^{x}\, dx=[\; u=x-5\; ,\; du=dx\; ,\; dv=e^{x}\; ,\; v=e^{x}\; ]=\\\\=(x-5)e^{x}-\int e^{x}\, dx=(x-5)e^{x}-e^{x}+C=e^{x}\, (x-6)+C\; ." />\2)\; \; \int \frac{dx}{x(x-1)}=\int \Big (-\frac{1}{x}+\frac{1}{x-1}\Big )\, dx=-ln|x|+ln|x-1|+C=ln\Big |\frac{x-1}{x}\Big |+C\; ;" />