Строим прямую у=х-1 Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет Проверим, какой из них принадлежит (0;0) 0-0≤1 - верно. Значит условию удовлетворяет та часть, которой принадлежит точка (0;0) См. рис. 1
2у²=1 у²=1/2 у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы. Проверяем точку (0;0) 1-2·0<0 - неверно. Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0). См. рис.2
Системе x-y<=1; 1-2y²<0 удовлетворяет пересечение двух областей ( см. рис. 3)
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет
Проверим, какой из них принадлежит (0;0)
0-0≤1 - верно.
Значит условию удовлетворяет та часть, которой принадлежит точка (0;0)
См. рис. 1
2у²=1
у²=1/2
у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы.
Проверяем точку (0;0)
1-2·0<0 - неверно.
Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0).
См. рис.2
Системе
x-y<=1;
1-2y²<0
удовлетворяет пересечение двух областей ( см. рис. 3)