В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ВіКтОрІя0901
ВіКтОрІя0901
03.02.2023 00:49 •  Алгебра

Вычислить площадь фигуры, ограниченную линиями y=-x^2+2x+3, y=3-x

Показать ответ
Ответ:
hoteleleon3
hoteleleon3
20.07.2020 18:55
Рисунок во вложении.
Площадь фигуры:

S_D=\iint\limits_D dxdy=\int\limits_0^3dx\int\limits_{3-x}^{-x^2+2x+3}dy=\int\limits^3_0(y)|^{-x^2+2x+3}_{3-x}dx=\\=\int\limits^3_0((-x^2+2x+3)-(3-x))dx=\int\limits^3_0(-x^2+3x)dx=\\=(-\frac{x^3}{3}+\frac{3x^2}{2})|^3_0=-\frac{3^3}{3}+\frac{3*3^2}{2}-0=-9+13.5=4.5
Вычислить площадь фигуры, ограниченную линиями y=-x^2+2x+3, y=3-x
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота