Уравнение четвертой степени имеет максимум 4 корня.
Если все они действительные - то согласно правилу знаков Декарта - все они положительные , так как знак коэффициентов меняется 4 раза. ( + - + - + )
Согласно теореме Виетта сумма корней уравнения n - степени равна частному от деления коэффициента при степени n-1 на коэффициент при n - степени с противоположным знаком .
В нашем случае это 26/1 = 26
Определим точки перегиба функции в левой части Уравнения
ответ: 5-10*x-5y
Объяснение:
Первый не рациональный)
1) log(3; 126) = log (3; 3^2 *7 * 2) = log(3; 3^2) +log(3; 7) +log(3; 2) =
= 2+log(3; 7) +log(3; 2) = 1/x
2) log(7; 126) = log(7; 3^2) +log(7; 7) +log(7; 2) = 2*log(7; 3) +1 + log(7; 2) = 1/y
log(126; 32) = log(126; 2^5) = 5* log(126; 2) = 5/log(2; 126) ) =
= 5/( log(2; 3^2) +log(2; 7) +log(2; 2) ) = 5/( 2*log(2; 3) +log(2; 7) +1)
log(3; 7) = log(126; 3)/log(126; 7) = x/y
log(7; 3) =y/x
Из равенства 1 следует :
log(2; 3) = 1/( 1/x - 2 -x/y) = x*y/( y -2*x*y -x^2)
Из равенства 2 следует :
log(2; 7) = 1/( 1/y - 2*y/x -1) = x*y/( x -2*y^2 -x*y)
log(126; 32) = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
Второй рациональный)
log(126; 126) = log(126; 3^2 *7 *2) = log(126; 3^2)+log(126; 7)+log(126; 2) = 2*log(126; 3) +log(126; 7) +log(126; 2) = 1
log(126; 2) = 1-2*x-y
5*log(126; 2) =5-10*x-5*y
log(126; 32) = 5-10*x-5*y
Но значит ли это, что первый ответ неправильный?
Не совсем так.
Дело в том, что если решить, например, такую систему уравнений:
1-2*x-y = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
126^x +126^y = 10
То одним из решений этой системы будет :
x= log(126; 3)
y=log(126; 7)
Уравнение четвертой степени имеет максимум 4 корня.
Если все они действительные - то согласно правилу знаков Декарта - все они положительные , так как знак коэффициентов меняется 4 раза. ( + - + - + )
Согласно теореме Виетта сумма корней уравнения n - степени равна частному от деления коэффициента при степени n-1 на коэффициент при n - степени с противоположным знаком .
В нашем случае это 26/1 = 26
Определим точки перегиба функции в левой части Уравнения
f"(x) = (x^4-26x^3+160x^2-100x+7)" = 12x^2 - 156x +320
f"(x) =0
12x^2 - 156x +320 =0
x12 = 13/2 +- √561 / 6
x1 ≅ 2.5
x2≅10.4
- Точки перегиба
Все Корни уравнения положительные .
f(0) >0
f(2,5) >0
посмотрим есть ли на интервале от 0 до 2.5 отрицательные значения функции и соответственно 2 корня
f(0,5) = (0.5)^4-26*(0.5)^3+160*(0.5)^2-100*(0.5)+7 = -6.1875
Есть 2 действительных корня .
Посмотрим значение функции за второй точкой перегиба
f(12)= (12)^4-26*(12)^3+160*(12)^2-100*(12)+7 = -2345
При больших X - значение функции положительно ( так коэффициент при 4 степени положительный )
Значит уравнение имеет 4 действительных корня и их сумма по теореме Виетта равна 26