В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
вероника03
вероника03
22.07.2022 19:38 •  Алгебра

Вычислить предел функции, не используя правило Лопиталя. lim x стремится к бесконечности (3x - 1 / 3x + 2)^6x+1 = ?​

Показать ответ
Ответ:
Sverona
Sverona
16.05.2021 18:10

(см. объяснение)

Объяснение:

Условие:

\lim\limits_{x\to\infty}\left(\left(\dfrac{3x-1}{3x+2}\right)^{6x}+1\right)

\lim\limits_{x\to\infty}\left(\left(\dfrac{3x-1}{3x+2}\right)^{6x}+1\right)=\lim\limits_{x\to\infty}\left(\dfrac{3x-1}{3x+2}\right)^{6x}+1

Замена: t=3x+2.

\lim\limits_{t\to\infty}\left(\dfrac{3\times\dfrac{t-2}{3}-1}{t}\right)^{6\times\frac{t-2}{3}}+1=\lim\limits_{t\to\infty}\left(\dfrac{t-3}{t}\right)^{2t-4}+1=\lim\limits_{t\to\infty}\left(\left(1-\dfrac{3}{t}\right)^t\right)^{\frac{2t-4}{t}}+1=\left(\lim\limits_{t\to\infty}\left(\dfrac{t-3}{t}\right)\right)^{\lim\limits_{t\to\infty}2-\frac{4}{t}}+1=\left(e^{-3}\right)^2+1=\dfrac{1}{e^6}+1

Итого получили, что ответ:

\dfrac{1}{e^6}+1

Задание выполнено!

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота