описывает функциональную зависимость расстояния х от времени t
Скорость тела v(t) определяется как производная от функции расстояния в заданный момент времени t
Ускорение тела a(t) определяется как производная от функции скорости v(t) в заданный момент времени t,
соответственно, ускорение будет определяться как производная второго порядка от функции расстояния в заданный момент времени t
Моментом(ами), когда скорость тела равна нулю, будут такие моменты времени t, при которых будет соблюдаться равенство:
Вычислим значение t, для которого v(t)=0.
Для этого найдем функцию скорости v(t) как производную x(t):
Приравняем полученное к нулю:
Нами получено 2 момента времени, когда скорость тела равна нулю.
Наййдем ускорение тела в вычисленные моменты времени.
Ускорение тела a(t) определяется как производная от функции скорости v(t) в заданный момент времени t,
поэтому вначале найдем производную
Затем вычислим ее значение в полученные моменты времени:
Примечание:
отрицательное значение ускорения - это означает, что вектор ускорения направлен в обратную сторону относительно вектора направнения движения (т.е. это торможение)
mв = 5 кг
t₁ = 15°C
t₂ = 100°C
Q ---? кДж
Решение.
Q = c*m*(t₂ -t₁), где m - масса,кг; t₂ и t₁ - конечная и начальная температуры,°С; с - удельная теплоемкость вещества, Дж/(кг*°С)
При нагревании воды тепло тратится также и на нагревание железного котла.
Q = Qж + Qв
Поскольку в задании не приведены удельные теплоемкости, берем
сж = 460Дж/(кг*°С) ; св = 4200Дж/(кг*°С),
t₂ -t₁ = 100 - 15 = 85 (°C) ( расчет ведем в градусах Цельсия).
Q = 460 * 1,5 * 85 + 4200 * 5 * 85 = (690 + 21000) *85 = 21690 * 85 = 1843650 (Дж) = 1843,65 (кДж)
ответ; 1843,65 кДж
25.378
25.379
Объяснение:
Указанный закон
описывает функциональную зависимость расстояния х от времени t
Скорость тела v(t) определяется как производная от функции расстояния в заданный момент времени t
Ускорение тела a(t) определяется как производная от функции скорости v(t) в заданный момент времени t,
соответственно, ускорение будет определяться как производная второго порядка от функции расстояния в заданный момент времени t
Моментом(ами), когда скорость тела равна нулю, будут такие моменты времени t, при которых будет соблюдаться равенство:
Вычислим значение t, для которого v(t)=0.
Для этого найдем функцию скорости v(t) как производную x(t):
Приравняем полученное к нулю:
Нами получено 2 момента времени, когда скорость тела равна нулю.
Наййдем ускорение тела в вычисленные моменты времени.
Ускорение тела a(t) определяется как производная от функции скорости v(t) в заданный момент времени t,
поэтому вначале найдем производную
Затем вычислим ее значение в полученные моменты времени:
Примечание:
отрицательное значение ускорения - это означает, что вектор ускорения направлен в обратную сторону относительно вектора направнения движения (т.е. это торможение)
25.379
x(t)=\frac{t^3}{6}-\frac{t^2}{4}+\frac{t}{2}+5x(t)=
6t ^3 − 4t ^2 + 2t+5
1. Найдем скорость в момент времени t=3
- определим функцию скорости v(t), вычислив производную x'(t):
- найдем значение v(t) в заданный в условии момент времени t=3
Получили ответ на 1-й вопрос задачи:
2. Определим значение силы f, действующей на тело, в момент времени t=3.
Как известно, сила рассчитывается как произведение массы тела на его ускорение в конкретный момент времени a(t):
Ускорение тела a(t) определяется как производная от функции скорости v(t) в заданный момент времени t
(также это - производная второго порядка от функции расстояния):
Вначале определим функцию ускорения тела в момент времени t.
Определим значение силы f, действующей на тело, в момент времени t=3 (масса из условия равна 2 кг):.
Получили ответ на 2-й вопрос в задаче:
или, т.к. 1 кг•м/с² - это 1 Н (по определению)