Решите графически систему уравнений у+3х=0 и у-3х=6
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
у+3х=0 у-3х=6
у= -3х у=6+3х
Таблицы:
х -1 0 1 х -1 0 1
у 3 0 -3 у 3 6 9
Согласно графику, координаты точки пересечения (-1; 3)
квадратный трехчлен принимает свое наибольшее значение (при a<0) ,
если x = -b/2a ; y max = - (b² -4ac) / 4a.
Учитывая еще условие y(-1)=0 ( x = -1 корень) можем написать систему уравнений :
{ -b/2a = 1 ; - (b² -4ac) / 4a =3 ; a(-1)² +b(-1) +c =0 .⇔
{ b = -2a ; -( (-2a)² -4ac) /4a =3 ; a +2a +c =0 .⇔
{ b = -2a ; c -a =3 ; c = -3a ⇔ { b = -2a ; -3a -a =3 ; c = -3a ⇔
{ b = 3/2 ; a = - 3/4 ; c = 9/4 .
y = -(3/4)x² + (3/2)x +9/4 . || (-3/4) (x² -2x -3) корни x₁= -1 ; x₂ =3 ||
Значение квадратного трехчлена при x=5 будет :
y(5) = -(3/4)*5² +(3/2)*5 +9/4 =( -3/4) (25 -10- 3) = (-3/4)*12 = -9.
ответ : - 9 .
Координаты точки пересечения (-1; 3)
Решение системы уравнений х= -1
у=3
Объяснение:
Решите графически систему уравнений у+3х=0 и у-3х=6
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
у+3х=0 у-3х=6
у= -3х у=6+3х
Таблицы:
х -1 0 1 х -1 0 1
у 3 0 -3 у 3 6 9
Согласно графику, координаты точки пересечения (-1; 3)
Решение системы уравнений х= -1
у=3