х³-5х²-2х+24=0 Корни уравнения надо искать среди делителей свободного слагаемого. Делители числа 24: 1;2;3;4;6;12;24 -1;-2;-3;-4;-6;-12;-24 Проверкой убеждаемся, что х=2 - корень уравнения В самом деле. (-2)³-5·(-2)²-2·(-2)+24=0 -8-20+4+24=0 -28+28=0 - верно. Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2 Делим -х³-5х²-2х+24 | x+2 x³+2x² x²-7x+12
_-7x²-2x+24 -7x²-14x
_12x+24 12x+24
0
х³-5х²-2х+24=0 (x+2)(x²-7x+12)=0 x+2=0 или х²-7х+12=0 х=-2 х=(7-1)/2=3 или х=(7+1)/2=4 О т в е т. -2; 3; 4.
3x= (+∨-)π/4+2πK
X=(+∨-)π/12+2/3*πK
б) 3cos²x+cosx-4=0
3t² +t -4=0
t₁=(-1-sqrt(1-4*3*(-4))/(2*3) =(-1-7)/6= -4/3
t₂=(-1+sqrt(1-4*3*(-4))/(2*3) =(-1+7)/6= 1
cosx = -4/3 <-1
cosx =1 ==>x=2π*k ; k∈Z (любое целое число)
в) √3cos2x+sin2x=0
2(√3/2cos2x + 1/2sin2x)=0
2(cosπ/6*cos2x + sinπ/6*sin2x)=0
2cos(2x -π/6) =0
2x -π/6=π/2 +π*k
2x=2π/3+π*k
x=π/3+π/3*k ; k∈Z (любое целое число)
2) sinx >√2/2
π/4<x< π-π/4 π/4<x< 3/4π
2π*k+π/4<x< 3/4π +2π*k
x∈ (2π*k+π/4x ; 3/4π +2π*k )
Корни уравнения надо искать среди делителей свободного слагаемого.
Делители числа 24:
1;2;3;4;6;12;24
-1;-2;-3;-4;-6;-12;-24
Проверкой убеждаемся, что х=2 - корень уравнения
В самом деле.
(-2)³-5·(-2)²-2·(-2)+24=0
-8-20+4+24=0
-28+28=0 - верно.
Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2
Делим
-х³-5х²-2х+24 | x+2
x³+2x² x²-7x+12
_-7x²-2x+24
-7x²-14x
_12x+24
12x+24
0
х³-5х²-2х+24=0
(x+2)(x²-7x+12)=0
x+2=0 или х²-7х+12=0
х=-2 х=(7-1)/2=3 или х=(7+1)/2=4
О т в е т. -2; 3; 4.